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On the cover: 

A celestial sphere constructed by Johann Reinhold in the late 1500’s for the Emperor 

Rudolph II.  Celestial spheres of this type served a similar purpose as a planetarium 

does today.  Polaris appears at the north pole of the celestial sphere and the other stars 

and constellations appear as though they were projected onto the interior of the sphere 

and viewed from the center.  The concepts that we study today as trigonometry first 

arose in the calculations required for astronomy, astrology and navigation.  These 

disciplines all required an intensive study of the night sky. 
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Chapter 1

Right Triangle Trigonometry

The Origins of Trigonometry

The precursors to what we study today as Trigonometry had their origin in an-
cient Mesopotamia, Greece and India. These cultures used the concepts of angles
and lengths as an aid to understanding the movements of the heavenly bodies
in the night sky. Ancient trigonometry typically used angles and triangles that
were embedded in circles so that many of the calculations used were based on
the lengths of chords within a circle. The relationships between the lengths of the
chords and other lines drawn within a circle and the measure of the correspond-
ing central angle represent the foundation of trigonometry - the relationship be-
tween angles and distances.

The earliest values for the sine function were calculated by Indian mathemati-
cians in the 5th century. The cosine and tangent, as well as the cotangent, secant
and cosecant were developed by Islamic mathematicians by the 11th century. Eu-
ropean navigators used these ideas extensively to help calculate distances and
direction during the Middle Ages. Modern European trigonometry as we un-
derstand it was then developed throughout the Renaissance (1450-1650) and En-
lightenment (1650-1800).
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6 CHAPTER 1. RIGHT TRIANGLE TRIGONOMETRY

1.1 Measuring Angles

Measuring Angles in Degrees

The two most common units for measuring angles are degrees and radians. De-
grees are based on the ancient Mesopotamian assignment of 360◦ to a complete
circle. This has its origin in the division of the horizon of the nighttime sky as
the earth takes 365 days to travel around the sun. Because degrees were origi-
nally developed by the Mesopotamians, they are often also broken out into 60
unit measures of minutes and seconds. Sixty seconds make one minute and sixty
minutes makes one degree.

60 seconds=1 minute
or

60′′=1′

60 minutes=1 degree
or

60′=1◦

Angles measured in degrees may also be expressed using decimal portions of a
degree, for example:

72.5◦=72◦ 30′

Converting from decimal to DMS

Converting between degrees expressed with decimals and the degrees, minutes,
seconds format (DMS) is relatively simple. If you’re converting from degrees
expressed with decimals to DMS, simply take the portion of the angle behind the
decimal point and multiply by 60. In our previous example, we would take the .5
from 72.5◦and multiply this by 60: 0.5*60=30. So, the angle in DMS units would
be 72◦ 30′.
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Examples

Convert 21.85◦to DMS units

0.85 ∗ 60 = 51

So, 21.85◦=21◦ 51′

Convert 143.27◦to DMS units

0.27 ∗ 60 = 16.2

So, 143.27◦ = 143◦ 16.2′

In order to compute the number of seconds needed to express this angle in DMS
units, we take the decimal portion of the minutes and multiply by 60:

0.2 ∗ 60 = 12

So, 143.27◦ = 143◦ 16.2′ = 143◦ 16′ 12′′

In the example above we ended with a whole number of seconds. If you don’t get
a whole number for the seconds then you can leave the seconds with a decimal
portion. For example, if you wanted to convert 22.847◦to DMS units:

22.847◦ = 22◦ 50.82′ = 22◦ 50′ 49.2′′

Converting from DMS to decimal

To convert from DMS units to decimals, simply take the seconds portion and
divide by 60 to make it a decimal:

129◦ 19′ 30′′ = 129◦ 19.5′

Then take the new minutes portion and divide it by 60

19.5
60 = 0.325
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This is the decimal portion of the angle

129◦ 19′ 30′′ =129◦ 19.5′ = 129.325◦

If you end up with repeating decimals in this process that’s fine - just indicate the
repeating portion with a bar.

Examples

Convert 42◦ 27′ 36′′ to decimal degrees

36
60= 0.6

42◦ 27′ 36′′ = 42◦ 27.6′

27.6
60 = 0.46

42◦ 27.6′ = 42.46◦

Convert 17◦ 40′ 18′′ to decimal degrees

18
60= 0.3

17◦ 40′ 18′′ = 17◦ 40.3′

40.3
60 = 0.6716

17◦ 40′ 18′′ = 17◦ 40.3′ = 17.6716◦
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Measuring Angles in Radians

The other most commonly used method for measuring angles is radian measure.
Radian measure is based on the central angle of a circle. A given central angle
will trace out an arc of a particular length on the circle. The ratio of the arc length
to the radius of the circle is the angle measure in radians. The benefit of radian
measure is that it is based on a ratio of distances whereas degree measure is not.
This allows radians to be used in calculus in situations in which degree measure
would be inappropriate.

θ

r

The length of the arc intersected by the central angle is the portion of the circum-
ference swept out by the angle along the edge of the circle. The circumference of
the circle would be 2πr, so the length of the arc would be θ

360◦∗2πr. The ratio of

this arclength to the radius is
θ

360◦ ∗2πr
r or

2π
360◦ ∗ θ

or in reduced form

π
180◦ ∗ θ

This assumes that the angle has been expressed in degrees to begin with. If an
angle is expressed in radian measure, then to convert it into degrees, simply mul-
tiply by 180◦

π .
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Examples - Degrees to Radians

Convert 60◦ to radians

π
180◦∗60

◦ =π
3

Convert 142◦ to radians

π
180◦∗142

◦ =71π
90 or 0.78π.

Examples - Radians to Degrees

Convert π
10 to degrees

180◦

π ∗
π
10= 18◦

Convert π
2 to degrees

180◦

π ∗
π
2= 90◦

Another way to convert radians to degrees is to simply replace the π with 180◦:

π
10=

180◦

10 = 18◦

π
2=

180◦

2 = 90◦
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Exercises 1.1

Convert each angle measure to decimal degrees.

1. 27◦ 40′ 2. 38◦ 20′ 3. 91◦ 50′

4. 34◦ 10′ 5. 274◦ 18′ 6. 165◦ 48′

7. 17◦ 25′ 8. 63◦ 35′ 9. 183◦ 33′ 36′′

10. 141◦ 6′ 9′′ 11. 211◦ 46′ 48′′ 12. 19◦ 12′ 18′′

Convert each angle measure to DMS notation.

13. 31.425◦ 14. 159.84◦ 15. 6.78◦

16. 24.56◦ 17. 110.25◦ 18. 64.16◦

19. 18.9◦ 20. 85.14◦ 21. 220.43◦

22. 55.17◦ 23. 70.214◦ 24. 116.32◦

Convert each angle measure from degrees to radians.

25. 30◦ 26. 120◦ 27. 45◦

28. 225◦ 29. 60◦ 30. 150◦

31. 90◦ 32. 270◦ 33. 15◦

34. 36◦ 35. 12◦ 36. 104◦
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Convert each angle measure from radians to degrees.

37. π
4 38. π

5 39. π
3

40. π
6 41. 3π

4 42. 7π
3

43. 5π
2 44. 7π

4 45. 5π
6

46. 2π
3 47. π 48. 7π

2
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1.2 The Trigonometric Ratios

There are six common trigonometric ratios that relate the sides of a right triangle
to the angles within the triangle. The three standard ratios are the sine, cosine and
tangent. These are often abbreviated sin, cos and tan. The other three (cosecant,
secant and cotangent) are the reciprocals of the sine, cosine and tangent and are
often abbreviated csc, sec, and cot.

θ

opposite

adjacenthypotenuse

Given an angle situated in a right triangle, the sine function is defined as the ratio
of the side opposite the angle to the hypotenuse, the cosine is defined as the ratio
of the side adjacent to the angle to the hypotenuse and the tangent is defined as
the ratio of the side opposite the angle to the side adjacent to the angle.

sin θ = opp
hyp

cos θ = adj
hyp

tan θ = opp
adj

A common mneumonic device to help remember these relationships is
–SOHCAHTOA– which identifies the Sin as Opp over Hyp Cos as Adj over Hyp
and the Tan as Opp over Adj.
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An acute angle placed in the other position of a right triangle would have dif-
ferent oppposite and adjacent sides although the hypotenuse would remain the
same.

α

adjacent

opposite

hypotenuse

Examples: Trigonometric Ratios

Find sin θ, cos θ and tan θ for the given angle θ

θ

3

5

In order to find the sin and cos of the angle θ, we must first find the hypotenuse
by using the Pythagorean Theorem (a2 + b2 = c2).
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Since we know the legs of the triangle, we can substitute these values for a and b
in the Pythagorean Theorem:

32 + 52 = c2

9 + 25 = c2

34 = c2

√
34 = c

Now that we know the hypotenuse (
√
34), we can determine the sin, cos and tan

for the angle θ.

sin θ = 3√
34

cos θ = 5√
34

tan θ = 3
5

Find sin θ, cos θ and tan θ for the given angle θ

θ

49

Again, in order to find the sin, cos and tan of the angle θ, we must find the missing
side of the triangle by using the Pythagorean Theorem. Since, in this case, we
know the hypotenuse and one of the legs, the value of the hypotenuse must be
substituted for c and the length of the leg we’re given can be substituted for either
a or b.
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42 + b2 = 92

16 + b2 = 81

b2 = 65

b =
√
65

Now that we know the length of the other leg of the triangle (
√
65), we can deter-

mine the sin, cos and tan for the angle θ.

sin θ =
√
65
9

cos θ = 4
9

tan θ =
√
65
4

In addition to the examples above, if we are given the value of one of the trigono-
metric ratios, we can find the value of the other two.

Example

Given that cos θ =1
3 , find sin θ and tan θ.

Given the information about the cosine of the angle θ, we can create a triangle
that will allow us to find sin θ and tan θ.

θ

1

3
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Using the Pythagorean Theorem, we can find the missing side of the triangle:

a2 + 12 = 32

a2 + 1 = 9

a2 = 8

a =
√
8 = 2

√
2

Then sin θ =
√
8
3 and tan θ =

√
8
1 =
√
8.

You might say to yourself, “Wait a minute, just because the cosine of the angle θ
is 1

3 , that doesn’t necessarily mean that the sides of the triangle are 1 and 3, they
could be 2 and 6, or 3 and 9 or any values n and 3n.”

This is true, and if the sides are expressed as n and 3n, then the missing side
would be n

√
8, so that whenever we find a trigonometric ratio, the n’s will cancel

out, so we just leave them out to begin with and call the sides 1 and 3.

Example

Given that tan θ =
√
5
7 , find sin θ and cos θ.

First we’ll take the infomation about the tangent and use this to draw a triangle.

θ

√
5

7
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Then use the Pythagorean Theorem to find the missing side of the triangle:

√
5
2
+ 72 = c2

5 + 49 = c2

54 = c2

√
54 = 3

√
6 = c

So then:

sin θ =
√
5√
54
=

√
5
54

cos θ = 7√
54
= 7

3
√
6
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Exercises 1.2

Find sin θ, cos θ and tan θ for the given triangles.

1. 12

13
θ

2.

√
25 θ

3.

8

15
θ

4.

3

7
θ

5.

6

4
θ

6.

27

36

θ

7.

√
15

2

θ

8.

8

4
√
2

θ
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9.

√
3

2
θ

10.

√
7

1
θ

Use the information given to find the other two trigonometric ratios.

11. tan θ =1
2 12. sin θ =3

4 13. cos θ = 3√
20

14. tan θ = 2 15. sin θ = 5√
40

16. sin θ = 7
10

17. cos θ = 9
40 18. tan θ =

√
3 19. cos θ =1

2

20. cos θ =3
7 21. sin θ =

√
5
7 22. tan θ = 1.5



1.3. SOLVING TRIANGLES 21

1.3 Solving Triangles

Using information about some of the sides and angles of a triangle in order to
find the unknown sides and angles is called “solving the triangle.” If two sides
of a triangle are known, the Pythagorean Theorem can be used to find the third
side. If one of the acute angles in a right triangle is known, the other angle will
be its complement with their sum being 90◦.

Suppose that we have a right triangle in which we know the sides, but no angles.
Another situation could involve knowing the angles but just one side. How could
we solve for the missing measurements in these situations?

Solving problems like these uses precalculated values of the trigonometric ratios
to match the lengths with the appropriate angles and vice versa. Up until the
1980’s, these values were printed in tables that were included in the back of every
textbook (along with tables of logarithms), but have recently been programmed
into calculators using methods that are studied in Calculus.

Most calculators have a button or function designed to find the inverse sine, in-
verse cosine and inverse tangent (sin−1, cos−1, and tan−1), these are the functions
that tell you the measure of the angle that has a sine, cosine or tangent equal to a
particular value.

For example, if we are given an angle θ and know that the sin θ =1
2 :

1
2

θ

Then we can find sin−1(1
2
) on a calculator, which should return a value of 30◦. If

the calculator is in radian mode, it will return a value of ≈ 0.523598776. If you
divided this number by π, you would get 0.16, which means that 0.523598776 ≈ π

6
.

In this chapter we will work mainly in degrees. In Chapter 2, when we graph the
trigonometric functions we will typically use radian measure.
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Example 1

Solve the triangle. Round side lengths to the nearest 100th and angles to the near-
est 10th of a degree.

8

5
θ

α

We can find the third side of the triangle by using the Pythagorean Theorem.

a2 + 52 = 82

a2 + 25 = 64

a2 = 39

a =
√
39 ≈ 6.24

When solving problems of this type, I encourage people to use the most accu-
rate values that are available in the problem. This way, there is less chance for
rounding error to occur.

If we take the values for the sides that were given in the problem (5 and 8), then
we can say that

cos θ =5
8

θ = cos−1(58)

θ ≈ 51.3◦

Then α would be 90◦ − 51.3◦ = 38.7◦ ≈ α.
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Example 2

Solve the triangle. Round side lengths to the nearest 100th and angles to the near-
est 10th of a degree.

68◦

5

First, we can find the other angle in the right triangle: 90◦ − 68◦ = 22◦.

Next, to find the sides, we choose a trigonometric ratio for which we know one
of the sides. In this problem, we can use either the sine or the cosine.

sin 68◦ =a
5

Approximating sin 68◦ on a calculator:

0.9272 ≈a5
5 ∗ 0.9272 ≈ a

4.6 ≈ a

When approximating a trigonometric value from the calculator, it is important to
use at least 4 decimal places of accuracy. Again, this is to avoid rounding errors.

To solve for the remaining side we can either use the Pythagorean Theorem or
use the method demonstrated above, but with the cos 68◦.
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cos 68◦ = b
5

Approximating cos 68◦ on a calculator:

0.3746 ≈ b5
5 ∗ 0.3746 ≈ b

1.9 ≈ b

If we use the Pythagorean Theorem with two sides of the triangle to find the
third, then we would say that:

b2 + 4.62 = 52

b2 + 21.16 = 25

b2 = 3.84

b =
√
3.84 ≈ 1.959 ≈ 2.0

The rounding error in this example comes from the fact that the first side we
found was not exactly 4.6. If we wanted a more accurate answer that matches the
answer we found using the cosine ratio, we just need more accuracy in the leg of
the triangle we found.

Calculating 5 ∗ sin 68◦ ≈ 4.636 should provide enough accuracy.

b2 + 4.6362 = 52

b2 + 21.492496 = 25

b2 = 3.507504

b =
√
3.507504 ≈ 1.8728 ≈ 1.9
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Example 3

Solve the triangle. Round side lengths to the nearest 100th and angles to the near-
est 10th of a degree.

40

22◦10′

If we convert the angle 22◦10′ to 22.16
◦, then the other acute angle in the right

triangle is 90◦ − 22.16
◦
= 67.83

◦ or 67◦50′.

Finding the remaining sides requires the use of either the cosine or tangent func-
tion.

cos 22.16
◦
=40

c

Approximating cos 22.16
◦ on a calculator:

0.9261 ≈40
c

Next we need to multiply on both sides by c:

c ∗ 0.9261 ≈40
c ∗c

0.9261c ≈ 40

Then divide on both sides by 0.9261:
0.9261c
0.9261 ≈

40
0.9261

c ≈ 43.2
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To find the other leg of the triangle, we can use the tangent ratio.

tan 22.16
◦
= a

40

Approximating tan 22.16
◦ on a calculator:

0.4074 ≈ a
40

Then, multiply on both sides by 40:

40 ∗ 0.4074 ≈ a

16.3 ≈ a

We can check this answer by the Pythagorean Theorem:

16.32 + 402 = 1865.69
√
1865.69 ≈ 43.2
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Exercises 1.3

In each problem below, solve the triangle. Round side lengths to the nearest 100th

and angle measures to the nearest 10th of a degree.

1.

8

6 2.

10

12

3. 32.4◦

7

4.

20

16.7◦

5.

10
47◦

6.

15

62◦
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7.

30

16 8.

12

6

9.

35

14◦ 10.
3

37◦

11.

√
11

65◦

12.

√
7 58◦
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1.4 Applications

Trigonometry is often used for what is called “indirect measurement.” This is a
method of measuring inaccessible distances by using the relationships between
lengths and angles within a triangle. Two simple examples of this process are
measuring the height of a tall tree and measuring the distance across a body of
water. In both cases, while it might be possible to measure the distance directly,
it is often much easier to use indirect measurement.

In one example of indirect measurement, the angle of elevation of an object can
be used to create a right triangle in which one angle and one side are known.
The other sides of the triangle may then be solved for. In the problems in this
text, the angle of elevation will typically be given in the problem. In order to
actually measure the angle of elevation of an object, it is possible to use a simple
protractor.

If you wanted to measure the height of a tall tree that sits on flat ground, you
could use a specially modified protractor to do this. Modifying the protractor
by tying a weight to the end of a string and tying the other end of the string
through the hole in the protractor will help to measure the angle of elevation.
Once the protractor is ready, hold it upside down and sight the top of the tree
along the straight edge of the protractor. The weight hanging down will show
the complement to the angle of elevation. In other words, if the angle of elevation
is 20◦, the string will mark out a measurement of 70◦on the protractor.

70◦

20◦
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Closely related to the concept of the angle of elevation is the angle of depression.
This is the angle that is formed by looking down on something from above.

θ

The angle of elevation is θ.

α

The angle of depression is α.

In a situation in which the angle of depression is measured, the angle of eleva-
tion and the angle of depression are alternate interior angles, which makes them
equal.

α

α

The angle of elevation equals the corrresponding angle of depression.
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Example 1

Pacing off 100 ft. on flat ground from the base of a tree, a forester measures the
angle of elevation to the top of the tree as 65◦. What is the height of the tree?

The situation described in the problem creates a diagram like the one below:

h

65◦

100 ft.

Since this is a right triangle, we can use an appropriate trigonometric ratio to find
the height of the tree. In this case,

tan 65◦ = h
100 .

100 ∗ tan 65◦ = h

214.45 ≈ h

So, the tree is about 214.45 feet tall.

Example 2

From the top of a building 125 feet tall, the angle of depression of an intersection
is 34◦. How far from the base of the building is the intersection?

As in the previous example, it is often helpful to draw a diagram.

125 ft.
34◦

d
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Again, the angle of elevation will be equal to the corresponding angle of depres-
sion, so we can use the triangle as seen below to solve the problem:

125 ft.
34◦

34◦

d

In this problem

tan 34◦ =125
d

Multiply on both sides by d

d ∗ tan 34◦ = 125

Then divide on both sides by tan 34◦

d tan 34◦

tan 34◦ = 125
tan 34◦

d ≈ 185.32

Example 3

Sometimes a problem involves both an angle of elevation and an angle of depres-
sion.

From the roof of a house 20 feet off the ground, the angle of elevation of the top
of an apartment building is 63◦and the angle of depression to the base of the
building is 24◦. How far away from the house is the apartment building? How
tall is the apartment building?
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d 63◦
24◦

20 ft. 20 ft.

If we work on the bottom triangle first, then we know that the height of the tri-
angle is 20 ft. and the angle opposite this side is 24◦. So, we can say that:

tan 24◦ = 20
d

d = 20
tan 24◦

d ≈ 45ft.

Now that we know that the apartment building is 45 feet away, we can use the
upper triangle to determine the height ofthe building.

45 ft. 63◦
24◦

20 ft. 20 ft.

b

tan 63◦ = b
45

45 ∗ tan 63◦ = b

88.3ft. ≈ b

20 + 88.3 = 108.3ft.

Since the variable b only represents the part of the building that is in the second
triangle, we need to add 20 feet to b to find the actual height of the building.
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Problems on bearing and direction

Some applications of trigonometry involve ship navigation. One common method
used to describe direction in this type of problem is what is known as bearing.
Bearing describes a direction by the angle deviation from north or south. For
example, the direction we typically describe as northeast is exactly halfway be-
tween north and east. The bearing for northeast would be N45◦E, and is read as
“Forty-five degrees east of north.”

EW

N

S

NE

45◦

Forty-five degrees East of North: N45◦E

Here are a few examples of what a bearing looks like in a N-S-E-W diagram.

EW

N

S
23◦

Twenty-three degrees West of South: S23◦W
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EW

N

S

60◦

Sixty degrees West of North: N60◦W

Example 4

Santa Rosa, California is 7 miles due north of Rohnert Park. Bodega Bay is 19
miles due west of Rohnert Park (as the crow flies). What is the bearing of Santa
Rosa from Bodega Bay?

First, it would be helpful to draw a diagram to represent the situation:

Rohnert ParkBodega Bay

Santa Rosa

7 mi.
19 mi.

To answer the question we’ll need another diagram:

EW

N

S

Bodega Bay

Santa Rosa

θ
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If we knew the angle θ, then we could conclude that the bearing of Santa Rosa
from Bodega Bay is θ degrees East of North. From the previous diagram:

Rohnert ParkBodega Bay

Santa Rosa

7 mi.
19 mi.α

we can see that we can’t find θ directly, but we can find the complement of θ.

tanα = 7
19

α ≈ 20.2◦

Therefore, θ ≈ 90◦ − 20.2◦ ≈ 69.8◦

That means that the bearing of Santa Rosa from Bodega Bay isN69.8◦E, or 69.8◦East
of North.
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Exercises 1.4

Round answers to the nearest 10th.

1. From the top of a lighthouse 180 feet above sea level, the angle of depres-
sion to a ship in the ocean is 28◦. How far is the ship from the base of the light-
house?

2. A helicopter that is 700 feet in the air measures the angle of depression to a
landing pad as 24◦. How far is the landing pad from the point directly beneath
the helicopter’s current position?

3. An 88 foot tree casts a shadow that is 135 feet long. What is the angle of
elevation of the sun?

4. A 275 foot guy wire is attached to the top of a communication tower. If the
wire makes an angle of 53◦with the ground, how tall is the tower?

5. A woman standing on a hill sees a building that she knows is 55 feet tall.
The angle of depression to the bottom of the building is 27◦and the angle of el-
evation to the top of the building is 35◦. Find the straight line distance from the
woman to the building.

27◦
35◦ d=? 55 ft.
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6. To measure the height of the cloud cover at an airport, a spotlight is shined
upward at an angle of 62◦. An observer 1000 feet away measures the angle of
elevation to the spotlight to be 36◦. Find the height of the cloud cover.

62◦36◦

h=?

1000 ft.

7. At ground level, a water tower is 430 feet from the base of a building. From
one of the upper floors of the building, the angle of elevation to the top of the
water tower is 15◦and the angle of depression to the bottom of the water tower is
28◦. How tall is the water tower? How high off the ground is the observer?

8. A small airplane is flying at the altitude of 7000 feet following a straight
road directly beneath it. A car in front of the airplane is sighted with an angle of
depression of 72◦and a car behind the plane is sighted with an angle of depression
of 48◦. How far apart are the cars?

9. From a point on the floor, the angle of elevation to the top of a doorway is
43◦. The angle of elevation to the ceiling directly above the doorway is 56◦. If the
ceiling is 10 feet above the floor, how high is the doorway? How far in front of
the doorway were the angles of elevation measured?

10. A man standing on the roof of a building 70 feet high looks at the building
next door. The angle of depression to the roof of the building next door is 36◦.
The angle of depression to the bottom of the building next door is 65◦. How tall
is the building next door?

11. A boat leaves the harbor and travels 30 miles in the direction of N38◦W .
The boat turns 90◦and then travels in the direction S52◦W for 12 miles. At that
time, how far is the boat from the harbor and what is the bearing of the boat from
the harbor entrance?
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12. A man walking in the desert travels 1.6 miles in the direction S57◦E. He
then turns 90◦and continues walking for 3.2 miles in the direction N33◦E. At
that time, how far is he from his starting point and what is his bearing from the
starting point?

13. Madras, Oregon is 26 miles due north of Redmond. Prineville is due east
of Redmond and S34◦42′E from Madras. How far is Prineville from Redmond?

14. Raymond, Washington is 22 miles due south of Aberdeen. Montesano is
due east of Aberdeen and N26◦34′E from Raymond. How far is Montesano from
Raymond?

15. A boat travels on a course bearing of S41◦40′W for 84 miles. How far south
and how far west is the boat from its starting point?

16. A boat travels on a course bearing ofN17◦10′E for 10 miles. How far north
and how far east is the boat from its starting point?
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1.5 More Applications

Sometimes solving problems involving right triangles requires the use of a sys-
tem of equations. A common method for determining the height of an object
whose base is inaccessible is that of measuring the angle of elevation from two
different places in front of the object. If you measure the angle of elevation to the
top of of a radio antenna as 74◦, then walk back 50 feet and measure the angle of
elevation to the top of the antenna as 61◦, then we would have something like the
diagram below:

74◦61◦

50 ft.

One of the first things we can do is introduce some labels for the unknown dis-
tances:

74◦61◦

50 ft.

h

x

Then, we can say that:

tan 74◦ =h
x

tan 61◦ = h
x+50
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To solve this system of equations, we’ll set the first one equal to h:

tan 74◦ =h
x

x ∗ tan 74◦ = h

Then, substitute this into the second equation:

tan 61◦ = h
x+50

tan 61◦ =x tan 74◦

x+50

Multiply on both sides by x+ 50:

(x+ 50) tan 61◦ =x tan 74◦

x+50 (x+ 50)

So,

(x+ 50) tan 61◦ = x tan 74◦

There are two options to solve this equation - we can hold on to the tangents
as they are and solve for x in terms tan 74◦ and tan 61◦, or we can approximate
tan 74◦ and tan 61◦ and generate an approximate value for x and h. First we’ll
approximate:

(x+ 50) tan 61◦ = x tan 74◦

(x+ 50) ∗ 1.804 ≈ 3.4874x

1.804x+ 90.2024 ≈ 3.4874x

90.2024 ≈ 1.6834x
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53.58 ≈ x

x ∗ tan 74◦ = h

53.58 ∗ tan 74◦ ≈ h

186.87 feet ≈ h

The other method is a little tricky algebraically:

(x+ 50) tan 61◦ = x tan 74◦

x tan 61◦ + 50 tan 61◦ = x tan 74◦

50 tan 61◦ = x tan 74◦ − x tan 61◦

50 tan 61◦ = x(tan 74◦ − tan 61◦)

50 tan 61◦

(tan 74◦−tan 61◦)= x

At this point, you can approximate the value of x and solve for h, or express the
value of h exactly as

tan 74◦∗ 50 tan 61◦

(tan 74◦−tan 61◦)= h
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Exercises 1.5

1. Find the indicated height h.

49.3◦29.6◦

392 ft.

h

2. Find the indicated height h.

52.5◦41.2◦

168 ft.

h

3. A small airplane flying at an altitude of 5300 feet sights two cars in front of
the plane traveling on a road directly beneath it. The angle of depression to the
nearest car is 62◦and the angle of depression to the more distant car is 41◦. How
far apart are the cars?

4. A hot air balloon is flying above a straight road. In order to estimate their
altitude, the people in the balloon measure the angles of depression to two con-
secutive mile markers on the same side of the balloon. The angle to the closer
marker is 17◦and the angle to the farther one is 13◦. At what altitude is the bal-
loon flying?

5. To estimate the height of a mountain, the angle of elevation from a spot
on level ground to the top of the mountain is measured to be 32◦. From a point
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1000 feet closer to the mountain, the angle of elevation is measured to be 35◦.
How high is the mountain above the ground from which the measurements were
taken?

6. The angle of elevation from a point on the ground to the top of a pyramid
is 35◦30′. The angle of elevation from a point 135 feet farther back to the top of
the pyramid is 21◦10′. What is the height of the pyramid?

7. An observer in a lighthouse 70 feet above sea level sights the angle of de-
pression of an approaching ship to be 15◦50′. A few minutes later the angle of
depression is sighted at 35◦40′. Find the distance traveled by the ship during that
time.

8. To estimate the height of a tree, one forester stands due west of the tree
and another forester stands due north of the tree. The two foresters are the same
distance from the base of the tree and they are 45 feet from each other. If the angle
of elevation for each forester is 40◦, how tall is the tree?

9. A ship is anchored off of a long straight shoreline that runs east to west.
From two observation points located 10 miles apart on the shoreline, the bearings
of the ship from each observation point are S35◦E and S17◦W . How far from
shore is the ship?

10. From fire lookout Station Alpha the bearing of a forest fire isN52◦E. From
lookout Station Beta, sited 6 miles due east of Station Alpha, the bearing isN38◦W .
How far is the fire from Station Alpha?

11. From a point 200 feet from the base of a church, the angle of elevation
to the top of the steeple is 28◦, while the angle of elevation to the bottom of the
steeple is 20◦. How high off the ground is the top of the steeple?

12. A television tower 75 feet tall is installed on the top of a building. From a
point on the ground in front of the building, the angle of elevation to the top of
the tower is 62◦and the the angle of elevation to the bottom of the tower is 44◦.
How tall is the building?



Chapter 2

Graphing the Trigonometric
Functions

2.1 Trigonometric Functions of Non-Acute Angles

In Chapter 1, we learned about the trigonometric functions of positive acute an-
gles that occur within right triangles. If we wish to extend the definition of the
trigonometric functions, then we need to define how to determine the values for
the sine and cosine of other angles. To do this, consider a right triangle drawn on
the coordinate axes. The positive acute angle θ will be the angle created between
the x-axis and the hypotenuse of the triangle. The lengths of the two legs of the
triangle will be the x and y coordinates of a point in the first quadrant.

1

x

y

(x, y)

θ

45
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1

x

y

(x, y) = (cos θ, sin θ)

θ

opposite

adjacent

In the picture above we see a triangle in the first quadrant with a hypotenuse of
1. In this situation, the value of sin θ = opp

hyp=
y
1 = y, which is just the y-coordinate

of the point at the top of the triangle. Correspondingly, the value of cos θ = adj
hyp=

x
1 = x, or the value of the x-coordinate of the same point.

This allows us to find the sine or cosine for what are known as the quadrantal
angles - the angles that are multiples of 90◦. If we look at the unit circle (the circle
with a radius of 1), then we can see the values of the sine and cosine for these
angles.

(cos 0◦, sin 0◦)

(1, 0)

(cos 90◦, sin 90◦)
(0, 1)

(cos 180◦, sin 180◦)

(−1, 0)

(cos 270◦, sin 270◦)
(0,−1)
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In the previous diagram, we see the values for the sine and cosine of the quad-
rantal angles:

cos 0◦ = 1 cos 90◦ = 0 cos 180◦ = −1 cos 270◦ = 0
sin 0◦ = 0 sin 90◦ = 1 sin 180◦ = 0 sin 270◦ = −1

If we take a radius of length 1 and rotate it counter-clockwise in the coordinate
plane, the x and y coordinates of the point at the tip will correspond to the values
of the cosine and sine of the angle that is created in the rotation. Let’s look at an
example in the second quadrant. If we rotate a line segment of length 1 by 120◦,
it will terminate in Quadrant II.

1

x = −0.5

y =

√
3
2

(cos θ, sin θ)

(−0.5,
√
3
2 )

θ=120◦

60◦

In the diagram above we notice several things. The radius of length 1 has been
rotated by 120◦into Quadrant II. If we then drop a perpendicular line from the
endpoint of the radius to the x-axis, we create a triangle in Quadrant II. Notice
that the angle supplementary to 120◦appears in the triangle and this allows us to
find the lengths of the sides of the triangle and hence the values for the x and y
coordinates of the point at the tip of the radius.

Whenever an angle greater than 90◦is created on the coordinate axes, simply drop
a perpendicular to the x-axis. The angle created is the reference angle. The values
of the trigonometric functions of the angle of rotation and the reference angle will
differ only in their sign (+,−). On the next page are examples for Quadrants II,
III, and IV.
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1

x = cos θ < 0

y = sin θ > 0

(cos θ, sin θ)

θ
180◦−θ

Quadrant II

In Quadrant II, the cosine is negative and the sine is positive.

1

x = cos θ < 0

y = sin θ < 0

(cos θ, sin θ)

θ

θ−180◦

Quadrant III

In Quadrant III, the cosine and sine are both negative.
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1

x = cos θ > 0

y = sin θ < 0

(cos θ, sin θ)

θ

360◦−θ

Quadrant IV

In Quadrant IV, the cosine is positive and the sine is negative.

The process for finding reference angles depends on which quadrant the angle
terminates in.

Examples

Find the reference angle for the following angles:

1. 128◦ 2. 241◦ 3. 327◦

1. An angle of 128◦terminates in Quadrant II. To find the reference angle, we
would subtract the angle from 180◦: 180◦ − 128◦ = 52◦.

128◦
52◦



50 CHAPTER 2. GRAPHING THE TRIGONOMETRIC FUNCTIONS

2. An angle of 241◦terminates in Quadrant III. To find the reference angle, we
would subtract 180◦from the angle: 241◦ − 180◦ = 61◦.

241◦

61◦

3. An angle of 327◦terminates in Quadrant IV. To find the reference angle, we
subtract the angle from 360◦: 360◦ − 327◦ = 33◦.

327◦

33◦

Once we know the reference angle, we can find the trigonometric functions for
the original angle itself. In example 1, we had 128◦, an angle in Quadrant II with
a reference angle of 52◦. Therefore, if we want to find the sine, cosine and tangent
of 128◦, then we should find the sine, cosine and tangent of 52◦and apply the
appropriate positive or negative sign.
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Example 1 Quadrant II

In Quadrant II, x-coordinates are negative and y-coordinates are positive. This
means that cos θ < 0 and sin θ > 0. The values for this process are given below:

sin 52◦ ≈ 0.7880 sin 128◦ ≈ 0.7880
cos 52◦ ≈ 0.6157 cos 128◦ ≈ −0.6157
tan 52◦ ≈ 1.280 tan 128◦ ≈ −1.280

Example 2 Quadrant III

In Quadrant III, x-coordinates are negative and y-coordinates are also negative.
This means that cos θ < 0 and sin θ < 0. The values for this process are given
below:

sin 61◦ ≈ 0.8746 sin 241◦ ≈ −0.8746
cos 61◦ ≈ 0.4848 cos 241◦ ≈ −0.4848
tan 61◦ ≈ 1.8040 tan 241◦ ≈ 1.8040

Example 3 Quadrant IV

In Quadrant IV, x-coordinates are positive and y-coordinates are negative. This
means that cos θ > 0 and sin θ < 0. The values for this process are given below:

sin 33◦ ≈ 0.5446 sin 327◦ ≈ −0.5446
cos 33◦ ≈ 0.8387 cos 327◦ ≈ 0.8387
tan 33◦ ≈ 0.6494 tan 327◦ ≈ −0.6494

sin θ > 0

cos θ > 0

tan θ > 0

sin θ > 0

cos θ < 0

tan θ < 0

sin θ < 0

cos θ < 0

tan θ > 0

sin θ < 0

cos θ > 0

tan θ < 0
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In Quadrant I, ALL the trigonometric functions are positive.

In Quadrant II, the SIN function is positive (as well as the CSC).

In Quadrant III, the TAN function is positive (as well as the COT).

In Quadrant IV, the COS function is positive (as well as the SEC).

AllSin

Tan Cos

A common mneumonic device to remember these relationships is the phrase:
“All Students Take Calculus.” This can help you remember which trigonometric
functions are positive in each of the four quadrants.

AS

T C
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Reference Angles for Negative Angles

Negatively measured angles rotate in a clockwise direction.

1

(cos θ, sin θ)

θ
θ + 180◦

There are a variety of methods for finding the reference angle for a negatively
valued angle. You can find a positive angle that is co-terminal with the negative
angle and then find the reference angle for the positive angle. You can also drop
a perpendicular to the x-axis to find the reference angle for the negative angle
directly.

For example, the angle −120◦ terminates in Quadrant III and is co-terminal with
the positive angle 240◦. Either way, when you drop a perpendicular to the x-axis,
you find that the reference angle is 60◦.

If you are given the value of one of the trigonometric functions of an angle θ,
and know which quadrant θ is located in, you can find the other trigonometric
functions for that angle.

Example

Given θ in Quadrant IV with cos θ =1
5 , find sin θ and tan θ.

If cos θ =1
5 , then the adjacent side and the hypotenuse must be in a ratio of 1:5.
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We can label these sides as 1 and 5 and then find the length of the third side in
the triangle. This will allow us to find sin θ and tan θ.

5

1

√
24

θ

360◦−θ

Using the Pythagorean Theorem:

52 = 12 + s2

25− 1 = s2

√
24 = s

we find that the side opposite the reference angle for θ is
√
24 or 2

√
6. We can

now find sin θ and tan θ:

sin θ =
√
24
5

and

tan θ =
√
24
1 =

√
24
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In the problems in this section, the reciprocal functions secant, cosecant and
cotangent are used. Remember that:

sec θ = 1
cos θ =

hyp
adj

csc θ = 1
sin θ =

hyp
opp

cot θ = 1
tan θ =

adj
opp

Exercises 2.1

Determine the quadrant in which the angle θ lies.

1. cos θ > 0, tan θ > 0 2. sin θ < 0, cos θ > 0

3. sec θ > 0, tan θ < 0 4. cot θ > 0, cos θ < 0

5. sin θ > 0, cos θ < 0 6. sin θ > 0, cot θ > 0

7. sin θ < 0, cos θ < 0 8. csc θ > 0, cot θ < 0

Determine which quadrant the given angle terminates in and find the reference
angle for each.

9. 195◦ 10. 330◦ 11. 120◦

12. 210◦ 13. 135◦ 14. 300◦

15. −100◦ 16. 225◦ 17. 315◦

18. 5π
4 19. −2π

3 20. 7π
3

21. 11π
4 22. 7π

6 23. 11π
6
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Find sin θ, cos θ and tan θ in each problem.

24. sin θ =−12
13 , θ in Quadrant IV 25. cos θ =−4

5 , θ in Quadrant II

26. cos θ =1
4 , θ in Quadrant I 27. tan θ =3

2 , θ in Quadrant III

28. tan θ =−4
5 , θ in Quadrant II 29. sin θ =3

8 , θ in Quadrant II

30. sin θ =−1
3 , θ in Quadrant III 31. tan θ = 5, θ in Quadrant I

32. sec θ = −2, tan θ < 0 33. cot θ =
√
3, cos θ < 0

34. tan θ =−1
3 , sin θ < 0 35. csc θ =

√
2, cos θ > 0

36. cos θ =−2
5 , tan θ > 0 37. sec θ = 2, sin θ < 0

38. sin θ = 1√
2

, cos θ > 0 39. sin θ =−2
3 , cot θ > 0
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2.2 Graphing Trigonometric Functions

We have seen how to determine the values of trigonometric functions for angles
terminating in Quadrants II, III, and IV. This allows us to make a graph of the
values of the sine function for any angle. In the chart below, I have listed the
values for the sine function for angles between 0◦and 360◦.

θ sin θ θ sin θ
0◦ = 0 100◦ ≈ 0.9848
10◦ ≈ 0.1737 110◦ ≈ 0.9397
20◦ ≈ 0.3420 120◦ ≈ 0.8660
30◦ = 0.5 130◦ ≈ 0.7660
40◦ ≈ 0.6428 140◦ ≈ 0.6428
50◦ ≈ 0.7660 150◦ = 0.5
60◦ ≈ 0.8660 160◦ ≈ 0.3420
70◦ ≈ 0.9397 170◦ ≈ 0.1737
80◦ ≈ 0.9848 180◦ = 0
90◦ = 1

θ sin θ θ sin θ
180◦ = 0 280◦ ≈ −0.9848
190◦ ≈ −0.1737 290◦ ≈ −0.9397
200◦ ≈ −0.3420 300◦ ≈ −0.8660
210◦ = −0.5 310◦ ≈ −0.7660
220◦ ≈ −0.6428 320◦ ≈ −0.6428
230◦ ≈ −0.7660 330◦ = −0.5
240◦ ≈ −0.8660 340◦ ≈ −0.3420
250◦ ≈ −0.9397 350◦ ≈ −0.1737
260◦ ≈ −0.9848 360◦ = 0
270◦ = −1

On the next page we see a graph of these points plotted on the coordinate axes.
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0 30 60 90 120 150 180 210 240 270 300 330 360

−1

−1
2

1
2

1

In graphing trigonometric functions, we typically use radian measure along the
x-axis, so the graph would generally look like this:

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1

zero

maximum

zero

minimum

zero
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The graph of the standard sine function begins at the zero point, then rises to
the maximum value of 1 between 0 and π

2 radians. It then decreases back to 0 at
π radians before crossing over into the negative values and hitting its minimum
value at 3π

2 radians. It then goes back up to 0 at 2π radians before starting all over
again.

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1

zero

maximum

zero

minimum

zero

The standard cosine graph behaves in a similar but slightly different way. We
saw earlier that cos 0◦ = 1, so the cosine graph would start at the point (0, 1), then
gradually decrease to zero. A picture of the standard cosine graph would look
like the figure below:

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1
maximum

zero

minimum

zero

maximum
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The sine and cosine graphs are sometimes referred to as a “sine wave” or “sinusoid”
and can be very useful in modeling phenomena that occur in waves. Examples
of this are the rise and fall of the tides; sound waves and music; electricity; and
the length of day throughout the year. The standard sine and cosine graphs must
be modified to fit a particular application so that they will effectively model the
situation. The ideas that we examine next will explain how to modify the sine
and cosine graphs to fit a variety of different situations.

There are four aspects to the sine and cosine functions to take into consideration
when making a graph. These are:

1) The Amplitude of the graph
2) The Period of the graph
3) The Vertical Shift of the graph
4) The Phase Shift of the graph

Amplitude

The amplitude of a sine or cosine function refers to the maximum and minimum
values of the function. In the standard sine and cosine graphs, the maximum
value is 1 and the minimum value is−1. The amplitude is one-half the difference
between the maximum and minimum values. In the standard graphs the differ-
ence between the maximum and minimum is 1 − (−1) = 2; one-half of this is 1,
so the amplitude of the standard sine and cosine functions is 1.

The value of the amplitude is also the absolute value of the coefficient of the sine
or cosine expression. In the standard graph, y = sinx, the coefficient of the sine
function is 1, so the amplitude is 1. In the function y = 2 sinx, all the y values
will be multiplied by 2 and the amplitude of the function will be 2. The graph for
y = 2 sin x is shown on the next page.
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y = 2 sin x

0 π
2

π 3π
2

2π

−2

−1

1

2

zero

maximum

zero

minimum

zero

A negative value of the coefficient in front of a trigonometric function will not
change the Amplitude of the function, but it will change the shape of the function.
For example, the function:

y = − sinx

has an amplitude of 1, but the graph will be different from the graph y = sinx.
All of the y-values of the function y = − sinx will have the opposite sign as the
y-values of the function y = sinx. The graph for y = − sinx appears below:

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1

zero

minimum

zero

maximum

zero

Notice that, because of the negation of the y-values, the graph begins at 0, as does
the standard sine function, but the graph of y = − sinx first goes to a minimum
value before crossing through 0 again up to the maximum value.
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Likewise, the graph of y = − cosx begins at the minimum value before crossing
through 0 and going to the maximum value, back through 0 and ending at the
minimum value again.

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1

minimum

zero

maximum

zero

minimum

y = − cosx

Period

The period of the graph refers to how long it takes the graph to complete one full
cycle of values. In the standard sine and cosine functions, the period is 2π radians.
The function completes a single “wave” and returns to its starting place between
0 and 2π. A coefficient in front of the variable in a sine or cosine function will
affect the period of the graph. In the general expression y = A sinBx, the value
of A affects the amplitude of the function and the value of B affects the period of
the function.

If we examine the table of values for the standard sine function, we can see how
the coefficient of the x-variable will affect the period of the graph. Starting with
the table from the standard sine function:
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θ sin θ θ sin θ
0◦ = 0 100◦ ≈ 0.9848
10◦ ≈ 0.1737 110◦ ≈ 0.9397
20◦ ≈ 0.3420 120◦ ≈ 0.8660
30◦ ≈ 0.5 130◦ ≈ 0.7660
40◦ ≈ 0.6428 140◦ ≈ 0.6428
50◦ ≈ 0.7660 150◦ ≈ 0.5
60◦ ≈ 0.8660 160◦ ≈ 0.3420
70◦ ≈ 0.9397 170◦ ≈ 0.1737
80◦ ≈ 0.9848 180◦ = 0
90◦ = 1

θ sin θ θ sin θ
180◦ = 0 280◦ ≈ −0.9848
190◦ ≈ −0.1737 290◦ ≈ −0.9397
200◦ ≈ −0.3420 300◦ ≈ −0.8660
210◦ ≈ −0.5 310◦ ≈ −0.7660
220◦ ≈ −0.6428 320◦ ≈ −0.6428
230◦ ≈ −0.7660 330◦ = −0.5
240◦ ≈ −0.8660 340◦ ≈ −0.3420
250◦ ≈ −0.9397 350◦ ≈ −0.1737
260◦ ≈ −0.9848 360◦ = 0
270◦ = −1

If we create a similar table for the function y = sin(2x) , then we can see how
this will affect the graph:

θ 2θ sin(2θ) θ 2θ sin(2θ)
0◦ 0◦ = 0 100◦ 200◦ ≈ −0.3420
10◦ 20◦ ≈ 0.3420 110◦ 220◦ ≈ −0.6428
20◦ 40◦ ≈ 0.6428 120◦ 240◦ ≈ −0.8660
30◦ 60◦ ≈ 0.8660 130◦ 260◦ ≈ −0.9848
40◦ 80◦ ≈ 0.9848 140◦ 280◦ ≈ −0.9848
50◦ 100◦ ≈ 0.9848 150◦ 300◦ ≈ −0.8660
60◦ 120◦ ≈ 0.8660 160◦ 320◦ ≈ −0.6428
70◦ 140◦ ≈ 0.6428 170◦ 340◦ ≈ −0.3420
80◦ 160◦ ≈ 0.3420 180◦ 360◦ = 0
90◦ 180◦ = 0
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In the previous table we can see that the function y = sin(2x) completes one full
cycle between 0 and π radians instead of the the standard 0 to 2π radians. The
graph for these points is shown below. The coordinates for the x-values between
π and 2π radians are shown as well.

0 30 60 90 120 150 180 210 240 270 300 330 360

−1

−1
2

1
2

1

In this graph, you can see that there are two complete waves between 0 and 2π
radians, or one complete wave between 0 and π radians. So, in a sine or cosine
function of the form y = A sinBx, the amplitude will be |A| and the period will
be 2π

B . The standard graph for one complete cycle of the function y = sin(2x) is
shown below:

0 π
4

π
2

3π
4

π

−1

1

Notice that, because the period has been cut in half, the x-coordinates that cor-
respond to the maximum, minimum, and zero y-coordinates are cut in half as
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well. Let’s look at some examples of how the Amplitude and the Period affect
the graphs of the sine and cosine functions.

Example 1

Graph one full period of the function y = −2 sin 3x.

The amplitude in this case is 2, but since the coefficient is negative, this sine graph
will begin by first going to the minimum value. The period of the graph will be
2π
B , or in this case 2π

3 instead of 2π. To determine the x-values for the maximum,
minimum and zero y-values, we should examine how these are determined for
the standard sine curve.

The maximum, minimum and zero y-values for a standard sine curve occur at
the quadrantal angles, that is to say, the angles that separate the four quadrants
from each other. The quadrantal angles are 0◦or 0 radians, 90◦or π2 radians, 180◦or
π radians, 270◦or 3π

2 radians and 360◦or 2π radians. These x-values produce the
“critical” y-values of the zero, maximum and minimum.

0 1
(1, 0)

0 radians
0◦

-1
(−1, 0)

π radians
180◦

1(0, 1)
90◦
π
2

radians

-1(0,−1) 3π
2

radians
270◦

In the standard sine or cosine graph, the distance from each “critical value” of the
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graph to the next is always a “jump” of π2 along the x-axis. This is one-fourth of
the period: 2π

1 ∗
1
4 = π

2 . So, to determine the labels for the critical values of the
graph along the x-axis, we should take the new period and multiply by 1

4 .

The function we are working with is y = −2 sin 3x, so to find the new period we
calculated 2π

B , which was 2π
3 . Then, in order to label the x-axis properly we

should next take 2π
3 and multiply by 1

4 .

2π
3 ∗

1
4 = 2π

12 = π
6

So, the critical values along the x-axis will be:

1π
6 ,

2π
6 ,

3π
6 , and 4π

6

We want to express these in lowest terms, so we would label them as π6 ,
π
3 ,

π
2 , and

2π
3 . The graph will start at zero, then (because the value of the coefficient A is

negative) it will go down to a minimum value at π6 , back to zero at π3 , then up to
the maximum at π2 and back down to zero at 2π

3 to complete one full period of the
graph. The graph for this function is pictured below. Notice that the minimum
y-value is −2 and the maximum y-value is 2 because A = 2.

0 π
6

π
3

π
2

2π
3

−2

−1

1

2

y = −2 sin 3x

Let’s look at an example using the cosine graph.
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Example 2

Graph one full period of the function y = 5 cos 2
3
x.

The amplitude of the function is 5 because A = 5, so the maximum y-value will
be 5 and the minimum y-value will be −5. The period of the graph will be 2π

B ,
which in this case is 2π

2
3

= 2π∗ 3
2 = 3π. So the period is 3π. The critical values

along the x-axis will start at 0 and be separated by “jumps” of 3π∗14 = 3π
4 . So the

critical values along the x-axis will be:

0, 3π
4 , 6π

4 , 9π
4 , and 12π

4

We want to express these in lowest terms so we would label them as 3π
4 , 3π

2 , 9π
4 ,

and 3π. The graph will start at the maximum y-value of 5 at x = 0, then it will go
to zero at x = 3π

4 , down to the minimum y-value of −5 at x = 3π
2 , back through

0 at x = 9π
4 , and then up to the maximum y-value of 5 at x = 3π to complete one

full period of the graph. The graph of y = 5 cos 2
3
x. is shown below.

0 3π
4

3π
2

9π
4

3π

−5

5

y = 5 cos 2
3
x
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Determining an equation from a graph

Sometimes, you will be given a graph and asked to determine an equation which
satisfies the conditions visible in the graph. So far, we have only discussed two of
the possible transformations of a trigonometric function - the amplitude and pe-
riod. Remember that in an equation of the form y = A sinBx or y = A cosBx, the
amplitude is |A| and the period is 2π

B . So, to write an equation for a trigonometric
function, we need to determine the values of A and B.

Example 3

Deterimine an equation that satisfies the given graph.

0 π
4

π
2

3π
4

π

−3

−2

−1

1

2

3

First note that the maximum y-value for the graph is 3 and the minimum is −3.
This means that the amplitude is 3. Next we see that there is one complete pe-
riod of the function between 0 and π, this means that the period is π. From this
information, we know that A = 3 and that the period for the graph is π. Since the
period P =2π

B , then we know that B =2π
P . So, B =2π

π = 2.
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Lastly, we notice that this graph starts with a y-value of 0, then goes to the max-
imum, back through 0 to the minimum and then back to zero to form one com-
plete wave. This is the signature of a sine function, so the answer to this problem
would be:

y = 3 sin 2x

Example 4

Deterimine an equation that satisfies the given graph.

0 9π
16

9π
8

27π
16

9π
4

−5

5

First note that the maximum y-value for the graph is 5 and the minimum is −5.
This means that the amplitude is 5. Next we see that there is one complete period
of the function between 0 and 9π

4 , this means that the period is 9π
4 . From this

information, we know that A = 5 and that the period for the graph is 9π
4 . Since

P =2π
B , and B =2π

P , then B = 2π
( 9π4 )

= 2π∗ 4
9π=

8
9 .
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Lastly, this graph starts with a y-value of 5, which is the maximum y-value. It
then goes to 0 and down to the minimum, back through 0 and then back to the
maximum to form one complete wave. Since this is the signature of the cosine
function, the answer to this problem would be:

y = 5 cos89x
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Exercises 2.2

Determine the amplitude and the period for each problem and graph one period
of the function. Identify important points on the x and y axes.

1. y = cos 4x 2. y = − sin 2x

3. y = 3 sin 3x 4. y = −2 cos 5x

5. y = 4 cos 1
2
x 6. y = 2 sin 1

3
x

7. y = −1
2
sin 2

3
x 8. y = −3 cos 3

5
x

9. y = −4 sin 6x 10. y = 3 sin 4x

11. y = 2 cos 3
2
x 12. y = 3 cos 5

3
x

Determine an equation that satifies the given graph.

13.

0 π
6

π
3

π
2

2π
3

−1

1

14.

0 π
8

π
4

3π
8

π
2

−2

2
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15.

0 3π
2

3π 9π
2

6π

−4

4

16.

0 π 2π 3π 4π

−3

3

17.

0 3π
8

3π
4

9π
8

3π
2

−7

7

18.

0 5π
4

5π
2

15π
4

5π

−1.5

1.5

19.

0 0.2 0.4 0.6 0.8

−2

2

20.

0 1 2 3 4

−6

6
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2.3 The Vertical Shift of a Trigonometric Function

If a constant is added or subtracted to a trigonometric function, this will affect
the y-values of the function. If we consider the function y = 5 + sinx, then each
of the standard y-values would have 5 added to it, which would shift the graph
up 5 units.

The chart below considers just the quadrantal values for the sine function:

θ sin θ 5 + sin θ
0 0 5
π/2 1 6
π 0 5

3π/2 −1 4
2π 0 5

0 π
2

π 3π
2

2π

−2

−1

1

2

3

4

5

6

7

y = sinx

y = 5 + sinx
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Sometimes the x-axis is drawn through the line that is the new “zero” or “mid-
line” for the function - in this case it would be y = 5.

π
2

π 3π
2

2π

3

4

6

7

y = 5 + sinx

Likewise, a negative constant would move the graph down, as each y-value
would be less than the corresponding y-value in the standard sine function.

0 π
2

π 3π
2

2π

−3

−2

−1

1

2

y = sinx

y = −2 + sin x

In the previous examples the constant has been written in front of the sine func-
tion for clarity. Often the constant is written after the function:

y = sinx+ 5
or

y = sinx− 2
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We have now examined three of the four transformations of trigonometric func-
tions that are discussed in this chapter - amplitude, period and vertical shift. A
general equation for a sinusoid that involves these three transformations would
be:

y = A sin(Bx) +D
or

y = A cos(Bx) +D

In determining an equation from a graph that involves a vertical shift, the value
of A will be half the distance between the maximum and minimum values:

A =max−min
2

and the value of D will be the average of the maximum and minimum values:

D =max+min
2

Example

Determine an equation that satisfies the given graph.

0 3π
4

3π
2

9π
4

3π

−2

2

4

6
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In this graph, the maximum y-value is 6 and the minimum y-value is −2. The
average of these two:

max+min
2 =

6+(−2)
2 =4

2= 2 = D

is the value of D, the vertical shift.

The distance between 6 and −2 is 6 − (−2) = 8. Half the distance between the
max and min is 4, which is the value of A.

max−min
2 =

6−(−2)
2 =8

2= 4 = A

The graph completes one full cycle between 0 and 3π, so the period would be 3π

and the value of B would be B =2π
P =2π

3π=
2
3= B. So a correct equation for the

graph would be:

y = 4 sin23x+ 2
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Exercises 2.3

Determine the Amplitude, Period and Vertical Shift for each function below and
graph one period of the function. Identify the important points on the x and y
axes.

1. y = sinx+ 1 2. y = cosx− 1

3. y = 2 cos x− 1
2

4. y = 5 sin x+ 4

5. y = − sin(1
4
x) + 1 6. y = − cos(2x) + 7

7. y = 1
3
sin(πx)− 4 8. y = −1

2
cos(2πx) + 2

9. y = 5 cos(1
2
x) + 1 10. y = 4 sin(1

3
x)− 1

11. y = 3 cos x+ 2 12. y = 2 sin x+ 3

13. y = 2− 4 cos(3x) 14. y = 5− 3 sin(2x)

Determine an equation that satifies the given graph.

15.

0 π
5

2π
5

3π
5

4π
5

−4

−2

2

4

16.

0
π
4

π
2

3π
4

π

−6
−4
−2

2
4
6
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17.

3π
4

3π
2

9π
4

3π

4

5

6

8

9

7

18.

π
2

π 3π
2

2π

−5

−4

−2

−1

−3

19.

π 2π 3π 4π

8

9

11

12

10

20.

2π
3

4π
3

2π 8π
3

−3

−2

0

1

−1
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2.4 Phase Shift

The last form of transformation we will discuss in the graphing of trigonometric
functions is the phase shift, or horizontal displacement. So far, we have con-
sidered the amplitude, period and vertical shift transformations of trigonometric
functions. In the standard equation y = A sin(Bx) +D, these corrrespond to the
coefficients A, B and D. Notice that the amplitude and vertical shift coefficients
(A and D), which affect the y-axis occur outside of the trigonometric function,
whereas the coefficient that affects the period of the graph along the x-axis oc-
curs within the sine function. This is true of the phase shift as well.

If we consider a general equation of:

y = A sin(Bx+ C) +D

the constant C will affect the phase shift, or horizontal displacement of the func-
tion. Let’s look at a simple example.

Example 1

Graph at least one period of the given function: y = sin(x+ π).
Be sure to indicate important points along the x and y axes.

Let’s examine this function by looking at a table of values.

x x+ π sin(x+ π)
0 π 0
π/2 3π/2 −1
π 2π 0

3π/2 5π/2 1
2π 3π 0
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Now let’s look at a graph of y = sin(x+ π) as compared to the standard graph of
y = sinx.

0−π
2

π
2

π 3π
2

2π

−1

1
y = sinx

0−π
2

π
2

π 3π
2

2π

−1

1
y = sin(x+ π)

Notice that if we take the standard graph of y = sinx and drag it backwards
along the x-axis a distance of π, we would have the graph of y = sin(x + π).
That’s because each x value is having π added to it, so to arrive at the x value that
produces a particular y-value, we would need to subtract π. Here’s an example:

x+ π y = sin(x+ π)
0 0
π/2 1
π 0

3π/2 −1
2π 0

In the table above we see the standard x and y values for the graph of the sine
function. In the table below, we add a column that shows the value that x would
need to be for x+ π to be the standard values:
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x x+ π y = sin(x+ π)
−π 0 0
−π/2 π/2 1
0 π 0
π/2 3π/2 −1
π 2π 0

Here’s a graph of these values:

0−π −π
2

π
2

π

−1

1

y = sin(x+ π)

This is the same graph of y = sin(x + π) that we saw on the previous page,
but anchored to different points on the x-axis. Either graph would be a correct
response to a question asking for at least one period of the graph of y = sin(x+π).

Let’s look at another example:

Example 2

Graph at least one period of the given function: y = sin(x+ π
3 ).

Be sure to indicate important points along the x and y axes.

In this simplified example, we really have only one transformation to worry
about - the phase shift. Notice that the amplitude, period and vertical shift have
all been left out. When considering a sine or cosine graph that has a phase shift, a
good way to start the graph of the function is to determine the new starting point
of the graph. In the previous example, we saw how the function y = sin(x + π)
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shifted the graph a distance of π to the left and made the new starting point of
the sine curve −π.

In graphing the standard sine curve we’re generally interested in the quadrantal
angles that produce the maximum, minimum and zero points of the graph. In
graphing the function y = sin(x+ π

3 ), we want to know which values of x will
produce the quadrantal angles when we add π

3 to them.

So, to determine the new starting point we want to know the solution to the
equation: x+π

3= 0

x+
π

3
= 0

−π
3
− π

3

x =−π
3

This is the new starting point for the graph y = sin(x+ π
3 ). Because this graph

has a standard period, the “jump” between each of the quadrantal angles will be
π
2 . To graph one period of a typical trigonometric function we’ll need at least five
quadrantal angle values. So, if our new starting point is−π

3 , then the next critical
value along the x-axis will be:

−π
3 +

π
2 = −2π

6 + 3π
6 = π

6

Then the subsequent critical values would be:

π
6 +

π
2 = π

6 +
3π
6 = 4π

6 = 2π
3

4π
6 + 3π

6 = 7π
6

7π
6 + 3π

6 = 10π
6 = 5π

3
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So the five critical values along the x-axis are:

−2π
6 ,

π
6 ,

4π
6 ,

7π
6 and 10π

6

or, in reduced form:

−π
3 ,

π
6 ,

2π
3 ,

7π
6 and 5π

3

In order to graph the function, we would put these values along the x-axis and
plot the standard quadrantal y-values to match up with them:

0−π
3

π
6

2π
3

7π
6

5π
3

−1

1

The y-values for the sine function start at zero, go up to the maximum, back down
through zero to the minimum and then back to zero:

0−π
3

π
6

2π
3

7π
6

5π
3

−1

1

zero

max

zero

min

zero
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Connecting these points to make a sine curve produces the following graph:

0−π
3

π
6

2π
3

7π
6

5π
3

−1

1
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Exercises 2.4

Match each function with the appropriate graph.

1. y = cos(x−π4 ) 2. y = sin(x+π
4 )

3. y = cosx− 1 4. y = sinx+ 1

5. y = sin(x−π4 ) 6. y = 1− cosx

7. y = sinx− 1 8. y = cos(x+π
4 )

A.

−π
4

π
4

3π
4

5π
4

7π
4

−1

1

B.

0 π
2

π 3π
2

2π

−1

1

2

C.

0 π
2

π 3π
2

2π

−2

−1

1

D.

π
4

3π
4

5π
4

7π
4

9π
4

−1

1
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E.

0 π
2

π 3π
2

2π

−2

−1

1

F.

−π
4

π
4

3π
4

5π
4

7π
4

−1

1

G.

π
4

3π
4

5π
4

7π
4

9π
4

−1

1

H.

0 π
2

π 3π
2

2π

−2

−1

1

Sketch at least one period for each function. Be sure to include the important
values along the x and y axes.

9. y = sin(x+π
6 ) 10. y = cos(x−π6 )

11. y = cos(x−π3 ) 12. y = sin(x+π
3 )

13. y = sin(x−3π
4 ) 14. y = cos(x+3π

4 )

15. y = cos(x+2π
3 ) 16. y = sin(x−2π

3 )
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2.5 Combining the Transformations

In the previous sections, we have seen how the various transformations act on
the trigonometric functions and we have worked with the first three (amplitude,
period and vertical shift) in combination with each other. Combining the phase
shift with the other transformations is tricky because of the way that the period
and the phase shift interact with each other.

Now we have two standard equations for the sinusoid:

y = A sin(Bx+ C) +D
and

y = A cos(Bx+ C) +D

A and D, the amplitude and the vertical shift affect the y-axis, while B and C
affect the x-axis.

y-axis x-axis

Amplitude= |A| Period=2π
B

Vertical Shift= D Phase Shift=−C
B

Let’s look at an example in which we need to combine a change in the period of
the graph with a phase shift.

Example 1

Graph at least one period of the given function. Indicate the important values
along the x and y axes.

y = cos(4x+ π)

The transformations in this example only affect the x-axis. The period of the
function is 2π

B =2π
4 =π

2 . So, the function will complete one full cycle over a distance
of π2along the x-axis.
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However, because of the phase shift, this graph will not start at 0 and end at π2 . We
need to find the new starting point that is caused by the phase shift. So, we take
what is called the “argument,” or what it is we’re finding the cosine of: (4x + π)
and set that equal to zero.

4x+ π = 0
4x = −π
x =−π

4

This is our new starting point. To identify the critical values along the x-axis,
we’ll need to determine how far each “jump” would be given a period of π2 .

π
2∗

1
4=

π
8

So, each subsequent critical value along the x-axis will be a distance of π8 from the
previous one. If we start at our new starting point for this function −π

4 , then if
we add π

8a total of 4 times, we will arrive at each of the five critical values for this
function.

−π
4+

π
8=−

2π
8 +π

8=−
π
8

−π
8+

π
8= 0

0+π
8=

π
8

π
8+

π
8=

2π
8 =π

4

So the critical values along the x-axis would be:

−π
4 ,−π

8 , 0, π8 , and π
4

Notice that the distance between the starting point−π
4and the ending point π4 is

equal to the period we found at the beginning of the problem, which was π2 . Now
let’s graph the function:
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−π
4
−π

8
π
8

π
4

−1

1

Since there were no changes to the y-axis, the amplitude for the function is 1 and
the vertical shift is 0. Along the x-axis, we see a positive sine function that starts
at (−π

4 , 0) then goes up to (−π
8 , 1), back down through (0, 0) to (π8 ,−1) and back

up to (π4 , 0) to complete one full cycle of the graph.

Let’s look at an example in which there are some changes to the y-axis as well as
the x-axis.

Example 2

Graph at least one period of the given function. Be sure to identify critical values
along the x and y axes.

y =−5
2+cos(3x− π)

Remember which coefficients affect which axis in graphing:

y-axis x-axis

Amplitude= |A| Period=2π
B

Vertical Shift= D Phase Shift=−C
B

In this example, the amplitude is 1, since there is no coefficient in front of the
cosine function. The vertical shift is −5

2 , which will shift the function down a
distance of 2.5 on the y-axis. So, the mid-line or “zero” points of the graph will
be at −2.5, the maximum y value will be −1.5 and the minimum y value will be
−3.5.
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Along the x-axis, the period for the graph will be 2π
B =2π

3 , since the coefficient B
in this problem is 3. To find the new starting point, we’ll take the argument of the
cosine function and set it equal to zero.

3x− π = 0

3x = π

x = π∗13=
π
3

So, our new starting point will be at π
3 . To determine the other critical values

along the x-axis, we can find out how far each “jump” between the critical values
would be. To do this, we take the period (2π3 ) and divide it by 4 (or multiply by
1
4 ).

2π
3 ∗

1
4=

2π
12=

π
6

Now we can add this value to our new starting point four times to determine the
other critical values along the x-axis.

π
3+

π
6=

2π
6 +π

6=
3π
6 =π

2

3π
6 +π

6=
4π
6 =2π

3

4π
6 +π

6=
5π
6

5π
6 +π

6= π

So the critical values along the x-axis would be:

2π
6 , 3π

6 , 4π
6 , 5π

6 , and 6π
6

or

π
3 , π2 , 2π

3 , 5π
6 , and π
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Again, notice that the distance along the x-axis from the starting point to the
ending point is the period: 2π

3 . Now let’s graph the function:

π
3

π
2

2π
3

5π
6

π

−4

−2

or

π
3

π
2

2π
3

5π
6

π

−3.5

−1.5

−2.5

Let’s look at one more example.

Example 3

Sometimes the coefficient B appears factored out of the argument as it does in
the problem below.

Graph at least one period of the given function. Be sure to include the critical
values along the x and y axes.

y = 4 sin 2(x+π
3 )− 1.

First let’s see how the x and y axes are affected by the transformations in this
problem.
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y-axis x-axis

Amplitude= |A| Period=2π
B

Vertical Shift= D Phase Shift=−C
B

y = 4 sin 2(x+π
3 )− 1.

The amplitude in this problem is 4 and the vertical shift is −1.

The period for this graph is 2π
B =2π

2 = π. Notice that the value of B is 2 in this
example, even though it’s been factored out from the rest of the argument.

The new starting point for the graph is actually easier to find in problems of this
type. If we take the argument as it is and set it equal to zero:

2(x+π
3 ) = 0

we can divide through on both sides by 2 to cancel out the factor of B:

2(x+π
3 )

2 =0
2

x+π
3= 0

x =−π
3

So, the new starting point for the function is−π
3 .

Now let’s find the rest of the critical values along the x-axis. The period for this
graph is π, so the “jump” between the critical values along the x-axis will be:

π∗14=
π
4
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To find the rest of the critical values we’ll need to add π
4 to the starting point of

the graph (−π
3 ) four times:

−π
3+

π
4=−

4π
12+

3π
12=−

π
12

− π
12+

3π
12=

2π
12=

π
6

2π
12+

3π
12=

5π
12

5π
12+

3π
12=

8π
12=

2π
3

So the critical values along the x-axis would be:

−4π
12 ,−1π

12 , 2π
12 , 5π

12 , and 8π
12

or

−π
3 ,− π

12 , π6 , 5π
12 , and 2π

3

Now that we’ve addressed each of the four transformations let’s use this infor-
mation to draw the graph. First the y-axis - the amplitude is 4 and the vertical
shift is −1:

−5

3

−1
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Now, let’s fill in the information for the x-axis. The critical values along the x-axis
are−π

3 ,− π
12 , π6 , 5π

12 , and 2π
3

−π
3

− π
12

π
6

5π
12

2π
3

−5

3

−1

The function we’re graphing is a positive sine function, so it will start at the “mid-
line” or zero value (which in this case is−1), go up to the maximum, back through
the mid-line to the minimum and back to the mid-line:

−π
3

− π
12

π
6

5π
12

2π
3

−5

3

−1
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Exercises 2.5

Determine the Amplitude, Period, Vertical Shift and Phase Shift for each function
and graph at least one complete period. Be sure to identify the critical values
along the x and y axes.

1. y = sin(x+π
2 ) 2. y = sin(x− π)

3. y = 3 cos(x−π2 ) 4. y =1
2cos(x+ π)

5. y = 3 + cos(x−π4 ) 6. y = −2 + sin(x+π
6 )

7. y = sin(2x− π) 8. y = sin(4x+π
4 )

9. y = 2 cos(x2+π) 10. y = −3 sin(6x− π)

11. y =−1
3sin(2x+

π
4 ) 12. y =1

2cos(
x
2−π)

13. y = 2 sin(2x−π3 )− 1 14. y = 1 + 2 cos(3x+π
2 )

15. y = 3 cos 2(x+π
6 ) 16. y = −4 sin 2(x+π

2 )

17. y = sin12(x+
π
4 ) 18. y = 3 + 2 sin 3(x+π

2 )

In problems 19− 22, determine an equation for the function that is shown.

19.

−2π −π π 2π

−2

−1

1

2

20.

−2π −π π 2π

−2

−1

1

2
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21.

−2π −π π 2π

−3

−2

−1

1

22.

−2π −π π 2π

−2

−1

1

2

Match the function to the appropriate graph

23. y = − cos 2x 24. y =1
2sinx− 2

25. y = 2 cos(x+π
2 ) 26. y = −3 sin12x− 1

27. y = sin(x− π)− 2 28. y =−1
2cos(x−

π
4 )

29. y =1
3sin 3x 30. y = cos(x−π2 )

A.

−2π −π π 2π

−3

−2

−1

1

B.

−2π −π π 2π

−2

−1

1

2

C.

−2π −π π 2π

−2

−1

1

2

D.

−2π −π π 2π

−4

−3

−2

−1

1

2
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E.

−2π −π π 2π

−2

−1

1

2

F.

−2π −π π 2π

−2

−1

1

2

G.

−2π −π π 2π

−2

−1

1

2

H.

−2π −π π 2π

−2

−1

1

2

Determine the Amplitude, Period, Vertical Shift and Phase Shift for each function
and graph at least one complete period. Be sure to identify the critical values
along the x and y axes.

31. y = 2 cos(2x+π
2 )− 1 32. y = −4 cos(3x− 2π)

33. y = sin(2x−π4 ) 34. y = − sin(3x+ π)

35. y = 3 cos(x+π
3 ) + 1 36. y = −2 sin(3x−π2 )+4

37. y =−1
2sin(x−

π
2 )− 2 38. y = 2− cos(2x−π3 )
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Chapter 3

Trigonometric Identities and
Equations

Due to the nature of the trigonometric ratios, they have some interesting prop-
erties that make them useful in a number of mathematical problem-solving sit-
uations. One of the hallmarks of mathematical problem-solving is to change the
appearance of the problem without changing its value. Trigonometric identities
can be very helpful in changing the appearance of a problem.

The process of demonstrating the validity of a trigonometric identity involves
changing one trigonometric expression into another, using a series of clearly de-
fined steps. We’ll look at a few examples briefly, but first, let’s examine some of
the fundamental trigonometric identities.

3.1 Reciprocal and Pythagorean Identities

The two most basic types of trigonometric identities are the reciprocal identities
and the Pythagorean identities. The reciprocal identities are simply definitions of
the reciprocals of the three standard trigonometric ratios:

sec θ = 1
cos θ csc θ = 1

sin θ cot θ = 1
tan θ

99
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Also, recall the definitions of the three standard trigonometric ratios (sine, cosine
and tangent):

sin θ = opp
hyp

cos θ = adj
hyp

tan θ = opp
adj

If we look more closely at the relationships between the sine, cosine and tangent,
we’ll notice that sin θ

cos θ= tan θ.

sin θ
cos θ=

( opphyp )

( adjhyp )
=
opp
hyp∗

hyp
adj =

opp
adj= tan θ

Pythagorean Identities

The Pythagorean Identities are, of course, based on the Pythagorean Theorem. If
we recall a diagram that was introduced in Chapter 2, we can build these identi-
ties from the relationships in the diagram:

1

x

y

(x, y) = (cos θ, sin θ)

θ

Using the Pythagorean Theorem in this diagram, we see that x2 + y2 = 12, so
x2 + y2 = 1. But, also remember that, in the unit circle, x = cos θ and y = sin θ.
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Substituting this equality gives us the first Pythagorean Identity:

x2 + y2 = 1
or

cos2 θ + sin2 θ = 1

This identity is usually stated in the form:

sin2 θ + cos2 θ = 1

If we take this identity and divide through on both sides by cos2 θ, this will result
in the first of two additional Pythagorean Identities:

sin2 θ
cos2 θ+

cos2 θ
cos2 θ=

1
cos2 θ

or

tan2 θ + 1 = sec2 θ

Dividing through by sin2 θ gives us the second:

sin2 θ
sin2 θ

+ cos2 θ
sin2 θ

= 1
sin2 θ

or

1 + cot2 θ = csc2 θ

So, the three Pythagorean Identities we will be using are:

sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2 θ

1 + cot2 θ = csc2 θ



102 CHAPTER 3. TRIGONOMETRIC IDENTITIES AND EQUATIONS

These Pythagorean Identities are often stated in other terms, such as:

sin2 θ = 1− cos2 θ

cos2 θ = 1− sin2 θ

tan2 θ = sec2 θ − 1

cot2 θ = csc2 θ − 1

At the beginning of this chapter, we discussed verifying trigonometric identities.
Now that we have some basic identities to work with, let’s use them to verify the
equality of some more complicated statements. The process of verifying trigono-
metric identities involves changing one side of the given expression into the other
side. Since these are not really equations, we will not treat them the way we treat
equations. That is to say, we won’t add or subtract anything to both sides of the
statement (or multiply or divide by anything on both sides either).

Another reason for not treating a trigonometric identity as an equation is that, in
practice, this process typically involves just one side of the statement. In prob-
lem solving, mathematicians typically use trigonometric identities to change the
appearance of a problem without changing its value. In this process, a trigono-
metric expression is changed into another trigonometric expression rather than
showing that two trigonometric expressions are the same, which is what we will
be doing.

Example 1

Verify the identity (sin θ)(cot θ) = cos θ

This is a very straightforward identity and it can solved by using one of the fun-
damental approaches to working with trigonometric identities. This is the ap-
proach of writing everything in terms of sines and cosines.
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Beginning with the original statement:

(sin θ)(cot θ) = cos θ

Replace cot θ with cos θ
sin θ :

(sin θ)cos θsin θ= cos θ

Then canceling out the sin θ:

cos θ = cos θ

There are four fundamental approaches to verifying trigonometric identities:

1. write everything in terms of sines and cosines

2. make a common denominator and add fractions

3. split a fraction

4. factor and cancel

Not all of these can be used in every problem and some problems will use com-
binations of these strategies. Here is another example.

Example 2

Verify the identity tan θ + cot θ = sec θ csc θ.

First we’ll write everything in terms of sines and cosines:

tan θ + cot θ = sec θ csc θ

sin θ
cos θ+

cos θ
sin θ=

1
cos θ ·

1
sin θ



104 CHAPTER 3. TRIGONOMETRIC IDENTITIES AND EQUATIONS

Next, on the left hand side, we can add the two fractions together by making a
common denominator of cos θ sin θ.

sin θ

cos θ
+

cos θ

sin θ
=

1

cos θ
· 1

sin θ

sin θ

sin θ
· sin θ
cos θ

+
cos θ

sin θ
· cos θ
cos θ

=
1

cos θ
· 1

sin θ

sin2 θ

sin θ cos θ
+

cos2 θ

sin θ cos θ
=

1

cos θ
· 1

sin θ

sin2 θ + cos2 θ

sin θ cos θ
=

1

cos θ
· 1

sin θ

1

sin θ cos θ
=

1

sin θ cos θ

In this example, you can see that we have first written everything in terms of
sines and cosines, then created common denominators and added the fractions
on the left hand side together. After this is done, we can replace the expression
sin2 θ + cos2 θ with 1, since this is the fundamental Pythagorean Identity.

Example 3

Verify the identity tan θ−cot θ
sin θ cos θ = sec2 θ − csc2 θ

We’ll begin this problem by splitting the fraction over the denominator. This
can be helpful in problems in which there is no addition or subtraction in the
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denominator. The idea here is that since a
x+

b
x=

a+b
x , then we can reverse this

process and say that a+bx =a
x+

b
x .

In the problem above we’ll say that:

tan θ − cot θ

sin θ cos θ
= sec2 θ − csc2 θ

tan θ

sin θ cos θ
− cot θ

sin θ cos θ
= sec2 θ − csc2 θ

sin θ
cos θ

sin θ cos θ
−

cos θ
sin θ

sin θ cos θ
= sec2 θ − csc2 θ

sin θ

cos θ
· 1

sin θ cos θ
− cos θ

sin θ
· 1

sin θ cos θ
= sec2 θ − csc2 θ

���sin θ

cos θ
· 1

���sin θ cos θ
−

���cos θ

sin θ
· 1

sin θ���cos θ
= sec2 θ − csc2 θ

1

cos2 θ
− 1

sin2 θ
= sec2 θ − csc2 θ

sec2 θ − csc2 θ = sec2 θ − csc2 θ

Example 4

Verify the identity tan2 θ−cos2 θ
1−cos2 θ = sec2 θ − cot2 θ.

On the left-hand side, notice the expression 1 − cos2 θ in the denominator. We
can replace this with sin2 θ, which is a simpler expression. It is often helpful to
have a simpler expression in the denominator rather than a more complicated
expression.
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tan2 θ − cos2 θ

1− cos2 θ
= sec2 θ − cot2 θ

tan2 θ − cos2 θ

sin2 θ
= sec2 θ − cot2 θ

Next, we can split the fraction over the denominator of sin2 θ:

tan2 θ − cos2 θ

sin2 θ
= sec2 θ − cot2 θ

tan2 θ

sin2 θ
− cos2 θ

sin2 θ
= sec2 θ − cot2 θ

We can see on the left-hand side that the expression cos2 θ
sin2 θ

is equivalent to cot2 θ,
but the first piece on the left-hand side needs to be simplified a little more. We’ll

rewrite tan2 θ as sin2 θ
cos2 θand then simplify the complex fraction.

tan2 θ

sin2 θ
− cos2 θ

sin2 θ
= sec2 θ − cot2 θ

sin2 θ
cos2 θ

sin2 θ
− cot2 θ = sec2 θ − cot2 θ

sin2 θ

cos2 θ
· 1

sin2 θ
− cot2 θ = sec2 θ − cot2 θ

���
sin2 θ

cos2 θ
· 1
���
sin2 θ

− cot2 θ = sec2 θ − cot2 θ
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After we cancel out the sin2 θ, we’re almost done:

���
sin2 θ

cos2 θ
· 1
���
sin2 θ

− cot2 θ = sec2 θ − cot2 θ

1

cos2 θ
− cot2 θ = sec2 θ − cot2 θ

sec2 θ − cot2 θ = sec2 θ − cot2 θ

The trigonometric identities we have discussed in this section are summarized
below:

Pythagorean Identities Reciprocal Identities

sin2 θ + cos2 θ = 1 tan θ = sin θ
cos θ

tan2 θ + 1 = sec2 θ cot θ =cos θ
sin θ

1 + cot2 θ = csc2 θ sec θ = 1
cos θ

csc θ = 1
sin θ

In the examples above and in the exercises, the form sin θ or cos θ is typically used,
however any letter may be used to represent the angle in question so long as it is
the SAME letter in all expressions. For example, we can say that:

sin2 θ + cos2 θ = 1

or we can say that
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sin2 x+ cos2 x = 1

however:

sin2 θ + cos2 x 6= 1

because θ and x could be different angles!
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Exercises 3.1

In each problem verify the given trigonometric identity.

1. cos θ(sec θ − cos θ) = sin2 θ 2. tan θ(cot θ + tan θ) = sec2 θ

3. tan θ(csc θ + cot θ) = sec θ + 1 4. cot θ(sec θ + tan θ) = csc θ + 1

5. tan2 θ csc2 θ − tan2 θ = 1 6. sin2 θ cot2 θ + sin2 θ = 1

7. sin θ tan θ+sin θ
tan θ+tan2 θ

= cos θ 8. cos θ cot θ+cos θ
cot θ+cot2 θ

= sin θ

9. (sin θ+cos θ)2

cos θ = sec θ + 2 sin θ 10. (sin θ + cos θ)2 + (sin θ − cos θ)2 = 2

11. cos θ(tan θ + cot θ) = csc θ 12. sin θ(cot θ + tan θ) = sec θ

13. cos θ
tan θ= csc θ − sin θ 14. sin θ

cot θ= sec θ − cos θ

15. csc θ
cos θ−

cos θ
csc θ=

cot2 θ+sin2 θ
cot θ 16. sec θ+csc θ

tan θ+cot θ= sin θ + cos θ

17. sin θ
1+sin θ−

sin θ
1−sin θ= −2 tan

2 θ 18. cos θ
1+cos θ−

cos θ
1−cos θ= −2 cot

2 θ

19. cot θ
1+csc θ−

cot θ
1−csc θ= 2 sec θ 20. tan θ

1+sec θ−
tan θ

1−sec θ= 2 csc θ

21. sec2 θ
1+cot2 θ

= tan2 θ 22. csc2 θ
1+tan2 θ

= cot2 θ

23. sec4 θ − sec2 θ = tan4 θ + tan2 θ 24. csc4 θ − csc2 θ = cot4 θ + cot2 θ

25. 1− cos2 θ
1+sin θ= sin θ 26. 1− sin2 θ

1+cos θ= cos θ

27. sec θ
csc θ+

sin θ
cos θ= 2 tan θ 28. 1−sin θ

cos θ + cos θ
1−sin θ= 2 sec θ

29. cos θ
1+sin θ+

1+sin θ
cos θ = 2 sec θ 30. tan θ−cot θ

tan θ+cot θ= sin2 θ − cos2 θ

31. sec θ−cos θ
sec θ+cos θ=

sin2 θ
1+cos2 θ 32. sec θ+tan θ

cot θ+cos θ= tan θ sec θ
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3.2 Double-Angle Identities

In this section we will include several new identities to the collection we estab-
lished in the previous section. These new identities are called “Double-Angle
Identities” because they typically deal with relationships between trigonometric
functions of a particular angle and functions of “two times” or double the original
angle.

To establish the validity of these identities we need to use what are known as
the Sum and Difference Identities. These are identities that deal with expressions
such as sin(α + β). First we will establish an expression that is equivalent to
cos(α− β).

Let’s start with the unit circle:

(1, 0)

(cosβ, sinβ)

β

(cosα, sinα)

α

α− β

If we rotate everything in this picture clockwise so that the point labeled (cos β, sin β)
slides down to the point labeled (1, 0), then the angle of rotation in the diagram
will be α− β and the corresponding point on the edge of the circle will be:
(cos(α− β), sin(α− β)).

The diagram that represents this rotation is on the next page.
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(cos(α− β), sin(α− β))

(1, 0)α− β

Since the the second diagram is created by rotating the lines and points from the
first diagram, the distance between the points (cosα, sinα) and (cos β, sin β) in the
first diagram is the same as the distance between (cos(α− β), sin(α− β)) and the
point (1, 0) in the second diagram.

(1, 0)

(cosβ, sinβ)

β

d

(cosα, sinα)

α

α− β

(cos(α− β), sin(α− β))

(1, 0)

d

α− β

In the diagram above the length of d in each picture is the same.
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We can represent this distance d with the distance formula used to calculate the
distance between two points in the coordinate plane:

The distance between the points (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)2 + (y2 − y1)2

So, in the first diagram the distance d will be:

d =
√
(cosα− cos β)2 + (sinα− sin β)2

In the second diagram the distance d will be:

d =
√

(cos(α− β)− 1)2 + (sin(α− β)− 0)2

Since these distances are the same, we can set them equal to each other:

√
(cosα− cos β)2 + (sinα− sin β)2 =

√
(cos(α− β)− 1)2 + (sin(α− β)− 0)2

We’ll square both sides to clear the radicals:

(cosα− cos β)2 + (sinα− sin β)2 = (cos(α− β)− 1)2 + (sin(α− β)− 0)2

Next, we’ll rewrite (sin(α− β)− 0)2 as sin2(α− β):

(cosα− cos β)2 + (sinα− sin β)2 = (cos(α− β)− 1)2 + sin2(α− β)
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Now we’ll work to simplify the expressions on the left-hand side of this equation.

(cosα− cos β)2 + (sinα− sin β)2 = (cos(α− β)− 1)2 + sin2(α− β)

First, each one needs to be squared:

(cosα− cos β)2 = cos2 α− 2 cosα cos β + cos2 β

(sinα− sin β)2 = sin2 α− 2 sinα sin β + sin2 β

So, the left-hand side will now be:

cos2 α− 2 cosα cos β + cos2 β + sin2 α− 2 sinα sin β + sin2 β

If we rearrange this a little, it will simplify nicely:

cos2 α− 2 cosα cos β + cos2 β + sin2 α− 2 sinα sin β + sin2 β

sin2 α + cos2 α + sin2 β + cos2 β − 2 cosα cos β − 2 sinα sin β

Notice the Pythagorean Identities at the front of this expression - these are each
equal to 1:

sin2 α + cos2 α + sin2 β + cos2 β − 2 cosα cos β − 2 sinα sin β

1 + 1− 2 cosα cos β − 2 sinα sin β

2− 2 cosα cos β − 2 sinα sin β

2(1− cosα cos β − sinα sin β)
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Now that we’ve simplified the left-hand side, we’ll simplify the right-hand side.
First we’ll square the expression (cos(α− β)− 1)2:

(cos(α− β)− 1)2 = cos2(α− β)− 2 cos(α− β) + 1

So, the right-hand side is now:

cos2(α− β)− 2 cos(α− β) + 1 + sin2(α− β)

If we rearrange this expression, we’ll again have a nice Pythagorean Identity:

sin2(α− β) + cos2(α− β)− 2 cos(α− β) + 1

1− 2 cos(α− β) + 1

2− 2 cos(α− β)

2(1− cos(α− β))

So the left-hand side was equal to:

2(1− cosα cos β − sinα sin β)

And the right-hand side was equal to:

2(1− cos(α− β))

So, our original statement in simplified form is:

2(1− cosα cos β − sinα sin β) = 2(1− cos(α− β))
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If we divide by 2 on both sides, we’ll have:

1− cosα cos β − sinα sin β = 1− cos(α− β)

then subtract 1

− cosα cos β − sinα sin β = − cos(α− β)

and multiply through by −1

cosα cos β + sinα sin β = cos(α− β)

So, cos(α− β) = cosα cos β + sinα sin β.

This will help us to generate the double-angle formulas, but to do this, we don’t
want cos(α− β), we want cos(α + β) (you’ll see why in a minute).

So, to change this around, we’ll use identities for negative angles. Recall that
in the fourth quadrant the sine function is negative and the cosine function is
positive. For this reason, sin(−θ) = − sin(θ) and cos(−θ) = cos(θ).

Now we can say that cos(2θ) = cos(θ + θ) = cos(θ − (−θ)). Going back to our
identity for cos(α− β), we can say that:

cos(θ − (−θ)) = cos θ cos(−θ) + sin θ sin(−θ)
cos(θ − (−θ)) = cos θ cos θ + sin θ(− sin θ)

cos(θ − (−θ)) = cos θ cos θ − sin θ sin θ

cos(θ − (−θ)) = cos2 θ − sin2 θ

cos(θ + θ) = cos2 θ − sin2 θ

cos(2θ) = cos2 θ − sin2 θ

This is the double-angle identity for the cosine: cos(2θ) = cos2 θ − sin2 θ.
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This identity actually appears in any one of three forms because the Pythagorean
Identities can be applied to this to change its appearance:

cos(2θ) = cos2 θ − sin2 θ

cos(2θ) = 1− sin2 θ − sin2 θ

cos(2θ) = 1− 2 sin2 θ

If we substitute for the sin2 θ term:

cos(2θ) = cos2 θ − sin2 θ

cos(2θ) = cos2 θ − (1− cos2 θ)

cos(2θ) = cos2 θ − 1 + cos2 θ

cos(2θ) = 2 cos2 θ − 1

So, the three forms of the cosine double angle identity are:

cos(2θ) = cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1− 2 sin2 θ

The double-angle identity for the sine function uses what is known as the co-
function identity. Remember that, in a right triangle, the sine of one angle is the
same as the cosine of its complement (which is the other acute angle). This is
because the adjacent side for one angle is the opposite side for the other angle.
The denominator in both cases is the hypotenuse, so the cofunctions of comple-
mentary angles are equal.
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In the diagram below, we can see this more clearly:

θ

a

b

c
90◦ − θ

In the diagram above note that:

sin θ =a
c= cos(90◦ − θ)

So, if we want an identity for sin(θ+ θ), we’ll start with sin(α+β) which is equiv-
alent to cos(90◦ − (α + β)). We’ll use a trick here and restate this as:

sin(α + β) = cos(90◦ − (α + β))

= cos(90◦ − α− β)
= cos((90◦ − α)− β)
= cos(90◦ − α) cos β + sin(90◦ − α) sin β
= sinα cos β + cosα sin β

Now, we can use this to find an expression for sin 2θ = sin(θ + θ):

sin 2θ = sin(θ + θ)

= sin θ cos θ + cos θ sin θ

= 2 sin θ cos θ
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Here is a summary of all the identities we’ve worked with in this chapter:

Pythagorean Identities Reciprocal Identities

sin2 θ + cos2 θ = 1 tan θ = sin θ
cos θ

tan2 θ + 1 = sec2 θ cot θ =cos θ
sin θ

1 + cot2 θ = csc2 θ sec θ = 1
cos θ

csc θ = 1
sin θ

Double-Angle Identities

cos(2θ) = cos2 θ − sin2 θ

cos(2θ) = 2 cos2 θ − 1

cos(2θ) = 1− 2 sin2 θ

sin(2θ) = 2 sin θ cos θ

Working problems involving double-angle identities is very similar to the other
identities we’ve worked with previously - you just have more identities to choose
from!

Example

Verify the given identity: cos 2x =1−tan2 x
1+tan2 x

We have three possible identities to choose from for the left-hand side, so we’ll
wait on that for a moment while we simplify the right-hand side.
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1− tan2 x

1 + tan2 x
=

1− tan2 x

sec2 x

=
1

sec2 x
− tan2 x

sec2 x

= cos2 x−
( sin

2 x
cos2 x

)

( 1
cos2 x

)

= cos2 x− sin2 x

cos2 x
· cos

2 x

1

= cos2 x− sin2 x

����cos2 x
·
����cos2 x

1

= cos2 x− sin2 x

This is one of the identities for cos(2θ) so we can stop and simply state cos(2x) =
cos2 x− sin2 x
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Exercises 3.2

In each problem verify the given trigonometric identity.

1. 2 sinx cosx
cos2 x−sin2 x= tan(2x) 2. sec(2x) = sec2 x

2−sec2 x

3. sin(2x) cscx = 2 cos x 4. 2 cosx
sin(2x)= cscx

5. cos(2x)
sinx +sinx =cotx

secx 6. sinx+sin(2x)
secx+2 = sinx cosx

7. (sinx+ cosx)2 = 1 + sin(2x) 8. (sin2 x− 1)2 = sin4 x+ cos(2x)

9. 2 cosx−cos(2x)
cosx = secx 10. 1+cos(2x)

1−cos(2x)= cot2 x

11. cos(2x)

sin2 x
= cot2 x− 1 12. cos(2x)

sin2 x
= csc2 x− 2

13. cotx−tanx
cotx+tanx= cos 2x 14. sin 2x =

2(tanx−cotx)
tan2 x−cot2 x

15. 2 cos 2x
sin 2x = cotx− tanx 16. tan 2x = 2

cotx−tanx

17. sinx
1+cosx+

1+cosx
sinx = 2 csc x 18. tanx+ cotx = 2 csc(2x)

19. cos(2x) =cot2 x−1
cot2 x+1

20. sin(2x) = 2 tanx
1+tan2 x

21. 2 sin2 x
sin(2x)+cotx = secx cscx 22. sec2 x cos(2x) = sec2 x− 2 tan2 x

23. cos(2x)
sinx +sinx = cscx− sinx 24. 2 tanx−sin(2x)

2 sin2 x
= tanx
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3.3 Trigonometric Equations

In the previous section on trigonometric identities we worked with equations
that would be true for all values of a particular angle θ. These are sort of like
the algebraic equations whose solution set is “all real numbers,” like 2x + 10 =
2(x+1)+8. In this section, we will solve trigonometric equations whose solution
set involves only certain values for the angle in question. Because of the cyclical
nature of the angles we’re working with, there will often be an infinite number of
solutions although not “all real numbers.”

Example 1

Here’s an example. Suppose that we consider the equation sinx = 0.5. Whether
we use technology, a table or reasoning to solve this equation, it’s clear that one
solution is 30◦. However, remember from the beginning of Chapter 2 that the
sine function is positive in Quadrant II. That means that a second quadrant angle
with a reference angle of 30◦also has a sine equal to 0.5. Recall the ASTC diagram
from Chapter 2:

AllSin

Tan Cos
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So, the sine function is positive in Quadrants I and II. This means that in addition
to a solution of 30◦, there is another solution in Quadrant II. As mentioned above,
this second quadrant solution has a reference angle of 30◦:

30◦
?

To find this angle, we simply subtract 180◦ − 30◦ = 150◦.

In Quadrant II, we subtract the reference angle from 180◦.

In Quadrant III, we add the reference angle to 180◦.

In Quadrant IV, we subtract the reference angle from 360◦.

So, the solutions to the equation sinx = 0.5 between 0◦and 360◦are x = 30◦, 150◦.
In this chapter we will consider mainly solutions with this restriction:

0◦ ≤ x < 360◦.

The infinite solutions to this equation can be expressed as:

30◦ + n · 360◦ and 150◦ + n · 360◦.
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Let’s look at another example:

Example 2

Find all solutions of the given equation for 0◦ ≤ x < 360◦.

tanx = 4

Using a calculator to find tan−1(4), we find that it returns an answer of x ≈ 75.96◦.
So this is the solution to the equation that lies in Quadrant I. The tangent function
is also positive in Quadrant III, so we should also consider the third quadrant
angle with a reference angle of 75.96◦:

75.96◦

?

In Quadrant III, we add the reference angle to 180◦:

180◦ + 75.96◦ = 255.96◦, so our solutions for this equation are x ≈ 75.96◦, 255.96◦.

Often, calculators are programmed to return an angle value that is not between
0◦ ≤ x < 360◦.
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Example 3

Find all solutions of the given equation for 0◦ ≤ x < 360◦.

sinx = −0.25

Solving this on a TI calculator would generally return a value of −14.5◦. How-
ever,−14.5◦ is clearly not between 0◦and 360◦, so we need to use this information
to find the solutions that are between 0◦and 360◦.

With the calculator returning a vlue of −14.5◦, we know that the reference angle
for all answers will be 14.5◦. Knowing this, we can say that the sine is negative
in Quadrants III and IV, so we’ll need angles in those quadrants with reference
angles of 14.5◦.

14.5◦ 14.5◦

In Quadrant III we’ll add 180◦to the reference angle: 180◦ + 14.5◦ = 194.5◦

In Quadrant IV we’ll subtract the reference angle from 360◦: 360◦−14.5◦ = 345.5◦.

So, x ≈ 194.5◦, 345.5◦.
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Some trigonometric equations have no real number solutions. The equation
sinx = 2 has no real number solutions. Recall that the sine ratio was originally
defined as the ratio of the side opposite an angle to the hypotenuse. The hy-
potenuse is always the longest side in a right triangle so there is no way the sine
function could be greater than 1 if we’re working with real-valued angles. How-
ever, in the same way that complex numbers are used to solve equations like
x2 = −7, complex-valued angles can be used to solve equations such as sinx = 2.
We won’t go into this here, however, there is a relatively straightforward way to
solve these equations.

If you encounter an equation like cosx = 3 and are solving for values of x
0◦ ≤ x < 360◦, then the proper response is “no solution” or “no real solution.”
However, remember that the tangent function can take any value between −∞
and∞.

Example 4

Solving an equation that includes a reciprocal trigonometric function simply in-
volves the extra step of finding the reciprocal:

Find all solutions of the given equation for 0◦ ≤ x < 360◦.

secx = 12

The trick here is to restate the equation so that we can use the preprogrammed
values from a calculator to find the solution.

If secx = 12 then cosx = 1
12 . Finding cos−1( 1

12)gives a solution of x ≈ 85.2◦.

The cosine and the secant are both positive in Quadrant IV, so we’ll also want a
fourth quadrant angle whose reference angle is 85.2◦:

85.2◦
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In Quadrant IV, we’ll subtract the reference angle from 360◦:

360◦ − 85.2◦ ≈ 274.8◦.

x ≈ 85.2◦, 274.8◦

Example 5

Solving a quadratic trigonometric equation often involves the use of the quadratic
formula:

Find all solutions of the given equation for 0◦ ≤ x < 360◦:

2 sin2 x− sinx− 2 = 0

Using the quadratic formula we arrive at approximate values for sinx of
sinx ≈ −0.7808, 1.2808.

The solution sinx ≈ 1.2808 yields no real solutions, so we will focus on solving
sinx ≈ −0.7808

Finding sin−1(−0.7808) gives us an answer of ≈ −51.3◦. This means our answers
will lie in Quadrants III and IV with reference angles of 51.3◦. In Quadrant III,
we’ll say 180◦ + 51.3◦ ≈ 231.3◦. In Quadrant IV, we’ll subtract the reference angle
from 360◦: 360◦ − 51.3◦ ≈ 308.7◦.

So, x ≈ 231.3◦, 308.7◦.
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Exercises 3.3

Find all solutions for 0◦ ≤ x < 360◦.
Round all angle measures to the nearest 10th of a degree.

1. cosx− 0.75 = 0 2. sinx+ 0.432 = 0

3. 3 sinx− 5 = 0 4. sinx− 4 = 0

5. 3 secx+ 8 = 0 6. 4 cscx+ 9 = 0

7. 3− 5 sinx = 4 sin x+ 1 8. 4 cosx− 5 = cos x− 3

9. 3 tan2 x+ 2 tanx = 0 10. 4 cos2 x− cosx = 0

11. 3 cos2 x+ 5 cosx− 2 = 0 12. 2 cot2 x− 7 cotx+ 3 = 0

13. 2 tan2 x− tanx− 10 = 0 14. 2 sin2 x+ 5 sinx+ 3 = 0

15. 2 cos2 x− 5 cosx− 5 = 0 16. 3 sin2 x− sinx− 1 = 0
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3.4 More Trigonometric Equations

When the solution to a trigonometric equation is one of the quadrantal angles
(0◦, 90◦, 180◦, 270◦and so on), then determining all the solutions between 0◦and
360◦can work a little differently. The calculator will return some of these values,
but in some cases it may not. If we go back to the unit circle, we can see this more
clearly:

(cos 0◦, sin 0◦)

(1, 0)

(cos 90◦, sin 90◦)
(0, 1)

(cos 180◦, sin 180◦)

(−1, 0)

(cos 270◦, sin 270◦)
(0,−1)

In the diagram above we can see the sine and cosine for 0◦, 90◦, 180◦, and 270◦.
Since tan θ = sin θ

cos θ , then we can see that tan 0◦ = 0, tan 90◦ is undefined, tan 180◦ =
0 and tan 270◦ is also undefined.

The real issue with the quadrantal angles is finding sin−1(0), cos−1(0) or tan−1(0).
The calculator returns values of:

sin−1(0) = 0◦

cos−1(0) = 90◦

tan−1(0) = 0◦

In each case, there is another possibility than differs from the given angle by 180◦,
so:
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sin−1(0) = 0◦, 180◦

cos−1(0) = 90◦, 270◦

tan−1(0) = 0◦, 180◦

Let’s look at how this is used in solving an equation:

Example 1

Solve the given equation for 0◦ ≤ x < 360◦.

tan2 x− tanx = 0

We could use the quadratic formula to solve this, but we can also solve by factor-
ing:

tan2 x− tanx = 0

tanx(tanx− 1) = 0

tanx = 0 or tanx = 1

Using a calculator to find tan−1(0) and tan−1(1) returns values of tan−1(0) = 0◦

and tan−1(1) = 45◦. Once we know the reference angle for tan−1(1), then we
know that since the tangent is also positive in Quadrant III, the solutions here are
45◦and 225◦. The calculator returns an answer of 0◦for tan−1(0), but we just saw
that tan 180◦ = 0 as well.

The answers for this equation are x = 45◦, 225◦, 0◦, 180◦.
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Another approach to solving trigonometric equations involves using Pythagorean
Identities to make a substitution that so that the equation can be simply solved
by the quadratic formula. Here’s an example:

Example 2

Solve the given equation for 0◦ ≤ x < 360◦.

sin2 θ − 6 cos θ = 4

Notice that, unlike the problems we saw in the previous section, this equation
involves both the sine and the cosine. To remedy this, we can replace the sin2 θ
term with the expression 1− cos2 θ.

sin2 θ − 6 cos θ = 4

1− cos2 θ − 6 cos θ = 4

0 = cos2 θ + 6 cos θ + 3

using the quadratic formula:

cos θ ≈ −5.449,−0.5505

Since cos−1(−5.449) is not a real-valued angle, we can focus on the other answer:
cos−1(−0.5505) ≈ 123.4◦. Since the cosine function is also negative in the third
quadrant, we need to find the reference angle that will help us identify the third
quadrant angle that is a solution for this equation:

180◦ − 123.4◦ = 56.6◦

So the reference angle is 56.6◦.

180◦ + 56.6◦ = 236.6◦

The solutions are θ ≈ 123.4◦, 236.6◦.
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Example 3

Solve the given equation for 0◦ ≤ x < 360◦.

2 cos2 θ − sin θ = sin2 θ + 1

First, we’ll substitute 1− sin2 θ for the cos2 θ:

2 cos2 θ − sin θ = sin2 θ + 1

2(1− sin2 θ)− sin θ = sin2 θ + 1

2− 2 sin2 θ − sin θ = sin2 θ + 1

0 = 3 sin2 θ + sin θ − 1

Solving this with the quadratic formula gives us solutions of sin θ ≈ −0.7676, 0.43426.

sin−1(−0.7676) ≈ −50.1◦

sin−1(0.43426) ≈ 25.7◦

We’ll work with the positive solution first. Since the sine is also positive in Quad-
rant II, the other angle will be 180◦ − 25.7◦ = 154.3◦.

For the negative solution, we know that the sine is negative in Quadrants III and
IV, so with a reference angle of 50.1◦, in the third quadrant 180◦ + 50.1◦ = 230.1◦

and in the fourth quadrant 360◦ − 50.1◦ = 309.9◦.

The solution set is θ ≈ 25.7◦, 154.3◦, 230.1◦, 309.9◦.
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Exercises 3.4

Solve the given equations for 0◦ ≤ x < 360◦.

1. 9 sin2 θ − 6 sin θ = 1 2. 4 cos2 θ + 4 cos θ = 1

3. sec2 α− 2 secα− 3 = 0 4. csc2 β + 4 csc β − 10 = 0

5. csc2 x+ 4 cscx− 7 = 0 6. 3 cot2 x− 3 cotx− 1 = 0

7. 2 sin2 x = 1− cosx 8. cos2 α + 4 = 2 sinα− 3

9. cos2 β − 3 sin β + 2 sin2 β = 0 10. sin2 θ = 2 cos θ + 3 cos2 θ

11. sec2 x = 2 tan x+ 4 12. 3 tan2 x = secx+ 2

13. cosα + 1 = 2 cos 2α 14. cos 2x− 3 sinx− 2 = 0

15. csc2 θ = cot θ + 5 16. csc θ + 5 = 2 cot2 θ + 2



Chapter 4

The Law of Sines
The Law of Cosines

In Chapter 1, we used the fundamental trigonometric relationships in right tri-
angles to find unknown distances and angles. Unfortunately, in many problem-
solving situations, it is inconvenient to use right triangle relationships. Therefore,
from the right triangle relationships, we can derive relationships that can be used
in any triangle.

4.1 The Law of Sines

The Law of Sines is based on right triangle relationships that can be created with
the height of a triangle. Often, in this type of a problem, the angles are labeled
with capital letters and their corresponding sides are labeled with lower case
letters.

A B

C

a

c

b

133
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If we drop a perpendicular to the base of the triangle from the vertex point at 6 C,
this creates two right triangles with which we can make use of the right triangle
trigonometry covered in Chapter 1. This perpendicular would be the height of
the triangle.

h

A B

C

a

c

b

The Law of Sines is derived from this configuration and allows us to calculate the
value of sides and angles in a triangle without a right angle, based on information
about known sides and angles. Given the right triangles in the diagram above,
we can see that:

sinB =h
a

and

sinA =h
b

Clearing the denominator in each fraction, we can see that:

a sinB = h

and

b sinA = h

so

a sinB = b sinA
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To put this in the form in which the Law of Sines is normally stated, we can divide
on both sides of the previous expression by ab:

a sinB = b sinA

a sinB
ab =b sinA

ab

sinB
b = sinA

a

A similar process will show that sinC
c is equivalent to sinB

b and sinA
a . The diagram

we derived this from used an acute triangle in which all the angles were less than
90◦. The process to show that this is true for an obtuse triangle (which has one
angle larger than 90◦) is relatively simple and is left to the reader to discover or
look up in another resource.

The Law of Sines

sinA
a = sinB

b = sinC
c

Sometimes it is handy to set up a problem with the side lengths in the numerator:

The Law of Sines

a
sinA=

b
sinB= c

sinC

Example 1

Solve the triangle. Round side lengths to the nearest 100th.

A

ba

45◦

95◦

5
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In this problem we’re given two angles and one side. It’s important that the side
we’re given corresponds to one of the known angles, otherwise we wouldn’t be
able to use the Law of Sines.

A

ba

45◦

95◦

5

Since we know two of the angles, then the third will just be 180◦ − (45◦ + 95◦) =
180◦ − 140◦ = 40◦ = 6 A. To find the lengths of the unknown sides, we’ll use the
Law of Sines. We should start by choosing a side-angle pair for which we know
both the side and the angle. In this case, we know that 6 C = 95◦ and side c = 5.

c
sinC=

b
sinB

5
sin 95◦=

b
sin 45◦

If we multiply on both sides by sin 45◦, then

sin 45◦∗ 5
sin 95◦= b

To arrive at an approximate value for sin 45◦∗ 5
sin 95◦ , we can say:

0.7071∗ 5
0.9962≈ b

3.55 ≈ b

To find the length of side a, I would recommend that we use the exact side-angle
pair that was given in the problem, rather than using the approximate value of
side b that we just solved for.
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This will make our value for side a more accurate:

c
sinC=

a
sinA

5
sin 95◦=

a
sin 40◦

Multiplying on both sides by sin 40◦, then

sin 40◦∗ 5
sin 95◦= a

To arrive at an approximate value for sin 40◦∗ 5
sin 95◦ , we can say:

0.6428∗ 5
0.9962≈ a

3.23 ≈ a

6 A = 40◦ a ≈ 3.23

6 B = 45◦ b ≈ 3.55

6 C = 95◦ c = 5

Example 2

Some problems don’t come with diagrams:

Solve the triangle if: 6 A = 40◦, 6 B = 20◦, a = 2.
Round side lengths to the nearest 100th.

Just as in the previous example, we can begin by finding the measure of the third
angle 6 C. This would be 180◦ − (40◦ + 20◦) = 180◦ − 60◦ = 120◦ = 6 C

To find the missing sides, we should use the complete side-angle pair that is given
in the problem: 6 A = 40◦ and a = 2.
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We can find side b first or side c first, it doesn’t matter which:

a
sinA=

b
sinB

2
sin 40◦=

b
sin 20◦

sin 20◦∗ 2
sin 40◦= b

Then,

0.3420∗ 2
0.6428≈ b

1.06 ≈ b

For side c:

a
sinA=

c
sinC

2
sin 40◦=

c
sin 120◦

sin 120◦∗ 2
sin 40◦= c

Then,

0.8660∗ 2
0.6428≈ c

2.69 ≈ c

6 A = 40◦ a = 2

6 B = 20◦ b ≈ 1.06

6 C = 120◦ c ≈ 2.69



4.1. THE LAW OF SINES 139

Exercises 4.1

In each problem below, solve the triangle. Round side lengths to the nearest 100th.

1. A

10a

30◦

125◦

c 2.

100◦

C
6

a

32◦

c

3.
25◦

A

98◦ 1000

c 4.

C

a

52◦ 70◦

26.7

5.
28◦

C
185

b
102◦

c 6.
40◦

A

17
37.5◦

c

7. 6 A = 50◦, 6 C = 27◦, a = 3 8. 6 B = 70◦, 6 C = 10◦, b = 5

9. 6 A = 110◦, 6 C = 30◦, c = 3 10. 6 A = 50◦, 6 B = 68◦, a = 230

11. 6 A = 23◦, 6 B = 110◦, c = 50 12. 6 A = 22◦, 6 B = 95◦, a = 420

13. 6 B = 10◦, 6 C = 100◦, c = 11 14. 6 A = 30◦, 6 C = 65◦, b = 10

15. 6 A = 82◦, 6 B = 65.4◦, b = 36.5 16. 6 B = 28◦, 6 C = 78◦, c = 44

17. 6 A = 42◦, 6 B = 61◦, a = 12 18. 6 A = 42.5◦, 6 B = 71.4◦, a = 215
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4.2 The Law of Sines: the ambiguous case

In all of the examples and problems in Section 4.1, notice that we were always
given two angles and one side, although we could use the Law of Sines if we
were given one angle and two sides (as long as one of the sides corresponded to
the given angle). This is because when we use the Law of Sines to find an angle,
an ambiguity can arise due to the sine function being positive in Quadrant I and
Quadrant II.

We saw in Chapter 3 that multiple answers arise when we use the inverse trigono-
metric functions. For problems in which we use the Law of Sines given one angle
and two sides, there may be one possible triangle, two possible triangles or no
possible triangles. There are six different scenarios related to the ambiguous case
of the Law of Sines: three result in one triangle, one results in two triangles and
two result in no triangle.

One Triangle

A

a
h

b

a > b

A

ahb

a = h

A

a
b

a > b
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Two Triangles

A

a a
b

h

h < a < b

No Triangle

A

a

hb

a < h

A

a

b

a ≤ b

We’ll look at three examples: one for one triangle, one for two triangles and one
for no triangles.
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Example 1

Solve the triangle if: 6 A = 112◦, a = 45, b = 24

Round the angles and side lengths to the nearest 10th.

Using the Law of Sines, we can say that:

sin 112◦

45 = sinB
24

0.9272
45 ≈

sinB
24

24∗0.927245 ≈ sinB

0.4945 ≈ sinB

Then, we find sin−1(0.4945) ≈ 29.6◦. Remember from Chapter 3 that there is a
Quadrant II angle that has sin θ ≈ 0.4945, with a reference angle of 29.6◦. So, 6 B
could also be ≈ 150.4◦. However, with 6 A = 112◦, there is no way that another
angle of 150.4◦would fit inside the same triangle. For this reason, we know then
that 6 B must be 29.6◦.

29.6◦ ≈ B

So now

6 A = 112◦

6 B ≈ 29.6◦

and 6 C = 180◦ − (112◦ + 29.6◦) = 180◦ − 141.6◦ ≈ 38.4◦

6 C ≈ 38.4◦

We already know that a = 45 and b = 24. To find side c, I would recommend
using the most exact values possible in the Law of Sines calculation. This will
provide the most accurate result in finding the length of side c.



4.2. THE LAW OF SINES: THE AMBIGUOUS CASE 143

45
sin 112◦=

c
sin 38.4◦

45
0.9272≈

c
0.6211

0.6211∗ 45
0.9272≈ c

30.1 ≈ c

6 A = 112◦ a = 45

6 B ≈ 29.6◦ b = 24

6 C ≈ 38.4◦ c ≈ 30.1

Example 2

Solve the triangle if: 6 A = 38◦, a = 40, b = 52

Round the angles and side lengths to the nearest 10th.

Using the Law of Sines, we can say that:

sin 38◦

40 = sinB
52

0.6157
40 ≈

sinB
52

52∗0.615740 ≈ sinB

0.8004 ≈ sinB

Just as in the previous example, we can find sin−1(0.8004) ≈ 53.2◦. But again,
there is a Quadrant II angle whose sine has the same value ≈ 0.8004. The angle
126.8◦has a sine ≈ 0.8004 and a reference angle of 53.2◦. With 6 A = 38◦, both of
these angles (53.2◦and 126.8◦) could potentially fit in the triangle with angle A.
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If we go back to the diagrams we looked at earlier in this section, we can see how
this would happen:

38◦ 53.2◦126.8◦

40 40
52

38◦

C

c
126.8◦

40
52 C

c
38◦ 53.2◦

40
52

In the first possibility 6 C would be ≈ 15.2◦.

In the second possibility 6 C would be ≈ 88.8◦.

38◦

15.2◦

c
126.8◦

40
52 88.8◦

c
38◦ 53.2◦

40
52

To find the two possible lengths for side c, we’ll need to solve two Law of Sines
calculations, one with 6 C ≈ 15.2◦ and one with the 6 C ≈ 88.8◦.

40
sin 38◦=

c
sin 15.2◦

40
0.6157≈

c
0.2622

0.2622∗ 40
0.6157≈ c

17.0 ≈ c
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With 6 C ≈ 88.8◦:

40
sin 38◦=

c
sin 88.8◦

40
0.6157≈

c
0.9998

0.9998∗ 40
0.6157≈ c

65.0 ≈ c

So, our two possible solutions would be:

6 A = 38◦ a = 40

6 B ≈ 126.8◦ b = 52

6 C ≈ 15.2◦ c ≈ 17.0

OR

6 A = 38◦ a = 40

6 B ≈ 53.2◦ b = 52

6 C ≈ 88.8◦ c ≈ 65.0

Example 3

Solve the triangle if: 6 B = 73◦, b = 51, a = 92

Round the angles and side lengths to the nearest 10th.

Using the Law of Sines, we can say that:

sin 73◦

51 = sinA
92
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0.9563
51 ≈

sinA
92

92∗0.956351 ≈ sinA

1.7251 ≈ sinA

As we saw previously, no real-valued angle has a sine greater than 1. Therefore,
no triangle is possible.
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Exercises 4.2

In each problem, solve the triangle.
Round side lengths to the nearest 100th and angle measures to the nearest 10th.

1. 6 A = 50◦, b = 20, a = 32 2. 6 B = 40◦, b = 4, c = 3

3. 6 A = 43◦, a = 23, b = 29 4. 6 C = 20◦, c = 43, a = 55

5. 6 B = 62◦, b = 4, a = 5 6. 6 A = 75◦, b = 8, a = 3

7. 6 B = 24◦, a = 17, b = 8 8. 6 A = 40◦, a = 4, c = 5

9. 6 A = 108◦, a = 12, b = 7 10. 6 B = 117◦, b = 19.6, c = 10.5

11. 6 A = 42◦, a = 18, c = 11 12. 6 C = 27◦, a = 42, c = 37

13. 6 C = 125◦, c = 2.7, b = 5.2 14. 6 B = 115◦, b = 68, a = 92

15. 6 A = 43◦, a = 31, b = 37 16. 6 A = 28◦, b = 3.5, a = 4.3

17. 6 C = 132◦, c = 22, b = 16 18. 6 B = 114.2◦, b = 87.2, a = 12.1

19. 6 B = 52◦, c = 82.7, b = 70 20. 6 C = 65◦, b = 7.6, c = 7.1
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4.3 The Law of Cosines

There are situations in which the Law of Sines cannot be used to solve a triangle.
In the diagram below, we have information about two sides and the included
angle:

26◦

10

18

The problem above lacks a complete angle-side pair which is necessary to set up
the Law of Sines calculation.

Another common situation involves a triangle in which all three sides are known
but no angles are known:

30

14
25

Again, the lack of an angle-side pair would prevent us from setting up a Law of
Sines calculation.

The Law of Cosines is one way to get around this difficulty. Using the Law of
Cosines is more complicated than using the Law of Sines, however, as we have
just seen, the Law of Sines will not always be enough to solve a triangle.

To derive The Law of Cosines, we begin with an arbitrary triangle, like the one
seen on the next page:



4.3. THE LAW OF COSINES 149

y

a
c

bC A

B

In this diagram we have taken the arbitrary triangle and created a perpendicular
with length y. From this, we can say that sinC =

y
aand that a sinC = y.

We can split side AC into two pieces AD and CD, as seen below, and label the
distance CD as x.

y

a
c

x DC A

B

Then, we can say that cosC =x
aand that a cosC = x.

If we then put this triangle onto the coordinate axes with 6 C at the origin (0, 0),
we can derive the Law of Cosines. The coordinate of the vertex at 6 B will be
(a cosC, a sinC), and the coordinates of the vertex at 6 A will be (b, 0).
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y
a c

x DC A
(b, 0)

B

(a cosC, a sinC)

Using the distance formula, we can say that:

c =
√

(a cosC − b)2 + (a sinC − 0)2

Squaring both sides:

c2 = (a cosC − b)2 + (a sinC − 0)2

and

c2 = a2 cos2C − 2ab cosC + b2 + a2 sin2C

or

c2 = a2 sin2C + a2 cos2C + b2 − 2ab cosC
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Factoring out the a2 and replacing sin2C + cos2C with 1, we come out with one
of the most common forms of the Law of Cosines:

c2 = a2 sin2C + a2 cos2C + b2 − 2ab cosC

c2 = a2(sin2C + cos2C) + b2 − 2ab cosC

c2 = a2(1) + b2 − 2ab cosC

c2 = a2 + b2 − 2ab cosC

Any letter may be used to represent each of the sides, but the order that the letters
are used in is very important. The side of the triangle isolated on the left hand
side must correspond to the angle used on the right hand side.

The Law of Cosines

a2 = b2 + c2 − 2bc cosA

b2 = a2 + c2 − 2ac cosB

c2 = a2 + b2 − 2ab cosC

We’ll look at three examples - two in which two sides and the included angle are
given and one in which the three sides of the triangle are given.
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Example 1

Solve the triangle: 6 A = 38◦, c = 17, b = 8
Round angle measures and side lengths to the nearest 10th.

38◦

A

C

B

a

c = 17

b = 8

It’s usually a good idea to see if you can use the Law of Sines first, since it is easier
to calculate. In this case we can’t because we don’t have a complete angle-side
pair. So, using the Law of Cosines to find side a:

a2 = b2 + c2 − 2bc cosA

a2 = 82 + 172 − 2 ∗ 8 ∗ 17 ∗ cos 38◦

a2 ≈ 64 + 289− 272 ∗ 0.7880

a2 ≈ 353− 214.336

a2 ≈ 138.664

a ≈ 11.8

Once we know that a ≈ 11.8 we can use this to find the other angles using the
Law of Sines. Because of the issue of the ambiguous case in using the Law of
Sines, it’s often a good idea to find the angles that correspond to the two shortest
sides in the triangle, because if there is an obtuse angle in the triangle it will have
to correspond to the longest side. If we find the two smaller angles, we can be
assured that they will both be acute and we can subtract from 180◦to find the
largest angle.
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sin 38◦

11.8 = sinB
8

8∗0.6156611.8 = sinB

0.4174 ≈ sinB

24.7◦ ≈ B

So with 6 A = 38◦ and 6 B ≈ 24.7◦, then:

6 C ≈ 180◦ − (38◦ + 24.7◦) ≈ 180◦ − 62.7◦ ≈ 117.3◦

So, the angles and sides of the triangle would be:

6 A = 38◦ a ≈ 11.8

6 B ≈ 24.7◦ b = 8

6 C ≈ 117.3◦ c = 17

In example 2, we’ll look at a problem in which an obtuse angle is given.

Example 2

Solve the triangle: 6 A = 110◦, c = 30, b = 35
Round angle measures and side lengths to the nearest 10th.

110◦

b = 35

c = 30

A C

B

a



154 CHAPTER 4. THE LAW OF SINES THE LAW OF COSINES

The calculation for this problem is slightly different from the last one because the
cosine of 110◦will be negative:

a2 = b2 + c2 − 2bc cosA

a2 = 352 + 302 − 2 ∗ 35 ∗ 30 ∗ cos 110◦

a2 ≈ 1225 + 900− 2100 ∗ (−0.3420)

a2 ≈ 2125 + 718.2

a2 ≈ 2843.2

a ≈ 53.3

In this problem, since we were given an obtuse angle, then the other two angles
must be acute and we don’t have to worry about the ambiguous case in using the
Law of Sines.

sin 110◦

53.3 = sinB
35

sin 110◦

53.3 = sinC
30

35∗0.939753.3 = sinB 30∗0.939753.3 = sinC

0.61706 ≈ sinB 0.5289 ≈ sinC

38.1◦ ≈ B 31.9◦ ≈ C

So the angles and sides of the triangle would be:

6 A = 110◦ a ≈ 53.3

6 B ≈ 38.1◦ b = 35

6 C ≈ 31.9◦ c = 30
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In example 3, we’ll look at a problem in which three side lengths are given and
we find an angle using the Law of Cosines.

Example 3

Solve the triangle: a = 20, c = 9, b = 15
Round angle measures to the nearest 10th.

a = 20

b = 15

C

A

B

c = 9

It doesn’t matter which angle we choose to solve, but whichever angle we choose
must correspond to the side isolated on the left-hand side of the formula. If we
want to solve for 6 B, we would say:

b2 = a2 + c2 − 2ac cosB

152 = 202 + 92 − 2 ∗ 20 ∗ 9 ∗ cosB

225 = 400 + 81− 360 ∗ cosB

225 = 481− 360 cosB

−256 = −360 cosB

−256
−360=

−360 cosB
−360

0.71 = cosB
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0.71 = cosB

44.7◦ ≈ B

Once we know the measure of 6 B, we’ll use this to find the measure of 6 C, which
corresponds to side c, the smallest side. Then we’ll subtract to find the biggest
angle.

sin 44.7◦

15 = sinC
9

9∗0.703415 = sinC

0.42204 ≈ sinC

25.0◦ ≈ C

So, with 6 B ≈ 44.7◦ and 6 C ≈ 25.0◦, then:

6 A ≈ 180◦ − (44.7◦ + 25.0◦) ≈ 180◦ − 69.7◦ ≈ 110.3◦

So the angles and sides of the triangle would be:

6 A = 110.3◦ a ≈ 53.3

6 B ≈ 44.7◦ b = 35

6 C ≈ 25.0◦ c = 30

If we had used the Law of Sines to find 6 A, the calculator would have returned
the value of the reference angle for 6 A, rather than the angle that is actually in
the triangle described in the problem!
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Exercises 4.3

In each problem, solve the triangle.
Round side lengths to the nearest 100th and angle measures to the nearest 10th.

1. A

24

30

30◦
BC

2.

A

B

C14

20

40◦

3. A B

C

60 122

154 4. A B

C
68

38

42

5. 6 A = 52◦, c = 27, b = 36 6. 6 B = 75◦, a = 32, c = 59

7. 6 B = 135◦, a = 12, c = 18 8. 6 C = 120◦, b = 22, a = 30

9. a = 21, b = 26, c = 23 10. a = 11, b = 13, c = 17

11. a = 25, b = 32, c = 40 12. a = 60, b = 88, c = 120

13. 6 A = 77.4◦, b = 444, c = 390 14. 6 B = 10◦, a = 18, c = 30

15. a = 112.7, b = 96.5, c = 130.2 16. a = 4.7, b = 3.2, c = 5.9
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4.4 Applications

In the previous sections on applications, we saw situations in which right triangle
trigonometry was used to find distances and angles. In this section, we will use
the Law of Sines and the Law of Cosines to find distances and angles.

Example 1

A car travels along a straight road, heading west for 1 hour, then traveling on
another straight road northwest for a half hour. If the speed of the car was a
constant 50 mph how far is the car from its starting point?

First, let’s draw a diagram:

A
B

C

45◦ 135◦

In the picture above, we know the angles 45◦ and 135◦ because of the direction the
car was traveling. The direction northwest cuts exactly halfway between north
and west creating a 45◦ angle. On the other side of this 45◦ angle is a 135◦ angle
which is in the triangle we’ll use to answer the question (triangle ABC).

The length of AB is 50 miles and the length of BC is 25 miles. This comes from
the information about the speed and traveling time given in the problem. So the
triangle we need to answer the question is pictured below:

A
B

C

c = 50

a = 25 135◦
b =?
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A
B

C

c = 50

a = 25 135◦
b =?

We can use the Law of Cosines to solve this problem:

b2 = a2 + c2 − 2ac cosB

b2 = 252 + 502 − 2 ∗ 25 ∗ 50 ∗ cos 135◦

b2 ≈ 625 + 2500− 2500 ∗ (−0.7071)

b2 ≈ 3125 + 1767.75

b2 ≈ 4892.75

b ≈ 69.9 miles
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Example 2

A pilot flies an airplane in a straight path for 2.5 hours and then makes a course
correction, heading 10◦to the left of the original course. The pilot then flies in this
direction for 1 hour. If the speed of the plane is a constant 350 mph, how far is
the plane from its starting position?

Again, we’ll start by making a diagram:

B

A

C
10◦

170◦

In this problem, we’ll be working with triangle ABC, shown below. We can cal-
culate the lengths of AB and BC from the information given in the problem and
use this to calculate the length of AC:

6 B = 170◦

A

C

a = 350

b

c = 875
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6 B = 170◦

A

C

a = 350

b

c = 875

Using the Law of Cosines:

b2 = a2 + c2 − 2ac cosB

b2 = 3502 + 8752 − 2 ∗ 350 ∗ 1050 ∗ cos 170◦

b2 ≈ 122, 500 + 765, 625− 735, 000 ∗ (−0.9848)

b2 ≈ 888, 125 + 723, 828

b2 ≈ 1, 611, 953

b ≈ 1270 miles
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Example 3

A pilot leaves the airport in Bend, headed towards Corvallis with the bearing
N70◦W . He travels the 103 miles and makes a delivery before taking off and
flying at a bearing of N25◦E for 72 miles to arrive in Portland.

B

C

P

70◦

25◦

a) Based on this information, find the air distance between Portland and Bend.

b) Find the bearing from Portland to Bend.

In this problem, a diagram has been given. We’ll amend this to make it into a
triangle:

B

C

P



4.4. APPLICATIONS 163

Filling the measures of the angles is tricky in this problem, so let’s look at the
original diagram again:

B

C

P

70◦

25◦

If we extend the dashed line east from Corvallis so that it meets the dashed line
running north from Bend, we can create a triangle that shows us that the angle
6 BCX = 20◦. Also, notice that 6 PCX = (90◦ − 25◦) = 65◦.

B

C

P

X

70◦

20◦

25◦

65◦

This means that 6 BCP = 85◦. We know from the problem that BC = 103 and
CP = 72. We’ll need to find the length ofBP and the measure of 6 CPB to answer
the questions.
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B

C

P

85◦

p = 103

b = 72

c =?

Now we’re working with a triangle like the one pictured above, so we can use
the Law of Cosines to find the air distance from Portland to Bend:

c2 = b2 + p2 − 2bp cosC

c2 = 722 + 1032 − 2 ∗ 72 ∗ 103 ∗ cos 85◦

c2 ≈ 5184 + 10, 609− 14, 832 ∗ (0.087156)

c2 ≈ 15, 793− 1292.7

c2 ≈ 14, 500.3

c ≈ 120.4 miles

To find 6 P , we’ll use the Law of Sines:

sin 85◦

120.4 = sinP
103

103∗ sin 85
◦

120.4 = sinP

103∗0.9962120.4 ≈ sinP

0.85223 ≈ sinP

58.4◦ ≈ P
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Now that we know the measure of 6 P , we can determine the bearing of Bend
from Portland.

B

C

P

58.4◦25◦

In the picture below notice that 6 Y PC = 25◦. This means that the bearing from
Portland to Bend will be east of south by the difference between 6 P = 58.4◦ and
6 Y PC = 25◦. This makes the bearing of Bend from Portland equal to S33.4◦E.

B

C

P

Y

25◦
25◦

33.4◦
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Example 4

A 125 foot tower is located on the side of a mountain that is inclined 32◦to the
horizontal. A guy wire is to be attached to the top of the tower and anchored at
a point 55 feet downhill from the base of the tower. Find the shortest length of
wire needed.

55 ft

32◦

125 ft

An important aspect in solving this problem is to identify a triangle in the prob-
lem which involves the unknown quantity we’re being asked to find. If we’re
looking for the length of the guy wire, we can use a triangle that involves the
wire, the distance from the wire to the center of the tower and the height of the
tower:

55 ft

125 ft

32◦

The angle between the horizontal and the hill will stay 32◦at any point on the
hill. If we drop a perpendicular to the horizontal, we’ll be able to find the angle
included between the two given sides.



4.4. APPLICATIONS 167

In the little right triangle, we know the 32◦angle. That means the other acute
angle must be 58◦, and the supplementary angle (which is in the triangle we’re
interested in) will be 122◦.

55 ft

125 ft

32◦

58◦
122◦

Now we can use the Law of Cosines to find the length of the guy wire:

x2 = 1252 + 552 − 2 ∗ 125 ∗ 55 ∗ cos 122◦

x2 = 15, 625 + 3025− 13, 750 ∗ cos 122◦

x2 ≈ 18, 650 + 7286.39

x2 ≈ 25, 936.39

x ≈ 161 feet
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Exercises 4.4

1. Two straight roads diverge at an angle of 50◦. Two cars leave the intersec-
tion at 1 pm, one traveling 60 mph and the other traveling 45 mph. How far apart
are the cars (as the crow flies) at 1:30 pm?

2. Two boats leave the same port at the same time. One travels at a speed of
40 mph in the direction N30◦E and the other travels at a speed of 28 mph in the
direction S75◦E. How far apart are the two boats after one hour?

N30◦E

30◦

S75◦E
75◦

E

N

S

W

3. The airport in Desert Junction is 350 miles from the airport in Valley Center
at a bearing of N57◦E. A pilot who wants to fly from Valley Center to Desert
Junction mistakenly flies due east at 225 mph for 30 minutes before correcting
the error. How far is the plane from its destination when the pilot notices the
error? What bearing should the plane use in order to arrive at Desert Junction?

Valley Center

Desert Junction

57◦

350 mi
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4. An airplane leaves airport A and travels 520 miles to airport B at a bearing
of N35◦W . The plane leaves airport B and travels to airport C 310 miles away at
a bearing of S65◦W from airport B. Find the distance from airport A to airport C.

5. Two planes take off at the same time from an airport. The first plane flies at
300 mph at a bearing of S45◦E. The second plane is flying at a bearing of S5◦W
with a speed of 330 mph. How far apart are they after 3 hours?

6. Two planes leave an airport at the same time. Their speeds are 180 mph
and 110 mph, and the angle between their flight paths is 43◦. How far apart are
they after 2.5 hours?

7. Two ships leave a harbor entrance at the same time. The first travels at
a speed of 23 mph and the second travels at 17 mph. If the angle between the
courses of the ships is 110◦, how far apart are they after one hour?

8. A ship leaves the entrance to a harbor and travels 15 miles with a bear-
ing S10◦W , then turns and travels 45 miles with a bearing of N43◦W . How far
from the harbor entrance is the ship and what is the bearing of the ship from the
harbor?

9. A steep mountain is inclined 77◦to the horizontal and rises 3000 feet above
the surrounding plain. A cable car is to be installed that will connect the plain
to the top of the mountain. The distance from the foot of the mountain to the
cable car entry loading area is 1200 feet (see diagram below). Find the shortest
necessary length of the cable.

77◦

cable car loading area
1200 feet

3000 ft
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10. A tree on a hillside casts a shadow 208 ft down the hill. If the angle of
inclination of the hillside is 25◦to the horizontal and the angle of elevation of the
sun is 51◦, find the height of the tree.

208 ft

51◦
25◦



Answer Key

Section 1.1

1. 27.6
◦ 3. 91.83

◦ 5. 274.3◦

7. 17.416
◦ 9. 183.56◦ 11. 211.78◦

13. 31◦ 25′ 30′′ 15. 6◦ 46′ 48′′ 17. 110◦ 15′

19. 18◦ 54′ 21. 220◦ 25′ 48′′ 23. 70◦ 12′ 50.4′′

25. π
6 27. π

4 29. π
3

31. π
2 33. π

12 35. π
15

37. 45◦ 39. 60◦ 41. 135◦

43. 450◦ 45. 150◦ 47. 180◦

Section 1.2

1. sin θ =12
13 3. sin θ = 8

17 5. sin θ = 6√
52
= 3√

13

cos θ = 5
13 cos θ =15

17 cos θ = 4√
52
= 2√

13

tan θ = 12
5 tan θ = 8

15 tan θ =6
4=

3
2

171
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Section 1.2 (cont.)

7. sin θ = 2√
15

9. sin θ =

√
3
7

cos θ =

√
11
15 cos θ = 2√

7

tan θ = 2√
11

tan θ =
√
3
2

11. sin θ = 1√
5

13. sin θ =

√
11
20 15. cos θ =

√
3
8

cos θ = 2√
5

tan θ =
√
11
3 tan θ = 5√

15

17. sin θ = 7
√
31

40 19. sin θ =
√
3
2 21. cos θ =

√
44
7

tan θ = 7
√
31
9 tan θ =

√
3 tan θ =

√
5
44

Section 1.3

1. Sides: 6, 8, 10 3. Sides: 7, 11.03, 13.06
Angles: 36.9◦, 53.1◦, 90◦ Angles: 32.4◦, 57.6◦, 90◦

5. Sides: 10, 10.72, 14.66 7. Sides: 16, 25.38, 30
Angles: 43◦, 47◦, 90◦ Angles: 32.2◦, 57.8◦, 90◦

9. Sides: 8.47, 33.96, 35 11. Sides:
√
11 ≈ 3.32, 7.11, 7.85

Angles: 14◦, 76◦, 90◦ Angles: 25◦, 65◦, 90◦
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Section 1.4

1. 338.5 feet 3. 33.1◦ 5. 45.5 feet

7. 343.8 feet, 228.6 feet 9. 6.3 feet, 6.7 feet 11. 32.3 mi., N59.8◦W

13. 18 mi. 15. 62.8 miles south, 55.8 miles west

Section 1.5

1. 435.5 feet 3. 3278.9 5. 5807.7 feet

7. 149.3 feet 9. 9.9 mi. 11. 106.3 ft.
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Section 2.1

1. Quadrant I 3. Quadrant IV 5. Quadrant II 7. Quadrant III

9. Quadrant III 11. Quadrant II
Reference Angle: 15◦ Reference Angle: 60◦

13. Quadrant II 15. Quadrant III
Reference Angle: 45◦ Reference Angle: 80◦

17. Quadrant IV 19. Quadrant III
Reference Angle: 45◦ Reference Angle: π3

21. Quadrant II 23. Quadrant IV
Reference Angle: π4 Reference Angle: π6

25. sin θ =3
5 27. sin θ = −3√

13
29. cos θ =−

√
55
8

tan θ =−3
4 cos θ =− 2√

13
tan θ =− 3√

55

31. sin θ = 5√
26

33. sin θ =−1
2 35. sin θ = 1√

2

cos θ = 1√
26

cos θ =−
√
3
2 cos θ = 1√

2

tan θ = 1√
3

tan θ = 1

37. sin θ =−
√
3
2 39. cos θ =−

√
5
3

cos θ = 1
2 tan θ = 2√

5

tan θ =
√
3
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Section 2.2

1. Amplitude=1, Period=π2 3. Amplitude=3, Period =2π
3

0
π
8

π
4

3π
8

π
2

−1

1

0
π
6

π
3

π
2

2π
3

−3

3

5. Amplitude=4, Period=4π 7. Amplitude=1
2 , Period =3π

0
π 2π 3π 4π

−4

4

0
3π
4

3π
2

9π
4

3π

−0.5

0.5

9. Amplitude=4, Period=π3 11. Amplitude=2, Period =4π
3

0
π
12

π
6

π
4

π
3

−4

4

0
π
3

2π
3

π 4π
3

−2

2
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Section 2.2 (cont.)

13. y = cos 3x 15. y = 4 sin13x 17. y = −7 cos43x 19. y = 2 cos5π2 x

Section 2.3

1. Amplitude=1, Period=2π 3. Amplitude=2, Period =2π
Vertical Shift=+1 Vertical Shift=−1

2

1
π
2

π 3π
2

2π

0

2

−1
2 π

2
π 3π

2
2π

−2.5

1.5

5. Amplitude=1, Period=8π 7. Amplitude=1
3 , Period =2

Vertical Shift=+1 Vertical Shift=-4

1
2π 4π 6π 8π

0

2

-4
0.5 1 1.5 2

−13
3

−10
3



4.4. APPLICATIONS 177

Section 2.3 (cont.)

9. Amplitude=5, Period=4π 11. Amplitude=3, Period =2π
Vertical Shift=+1 Vertical Shift=+2

1
π 2π 3π 4π

−4

6

2
π
2

π 3π
2

2π

−1

5

13. Amplitude=4, Period =2π
3 , Vertical Shift=+2

2
π
6

π
3

π
2

2π
3

−2

6

15. y = 2 cos52x+ 1 17. y = −2 sin23x+ 7 19. y = 2 sin12x+ 10
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Section 2.4

1. D 2. F 3. E 4. B

5. G 6. C 7. H 8. A

9. 11.

−π
6

π
3

5π
6

4π
3

11π
6

−1

1

π
3

5π
6

4π
3

11π
6

7π
3

−1

1

13. 15.

3π
4

5π
4

7π
4

9π
4

11π
4

−1

1

−2π
3
−π

6
π
3

5π
6

4π
3

−1

1
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Section 2.5

1. Amplitude=1, Vertical Shift=0 3. Amplitude=3, Vertical Shift=0
Period=2π, Phase Shift=−π

2 Period =2π, Phase Shift=π2

0−π
2

π
2

π 3π
2

−1

1

0
π
2

π 3π
2

2π 5π
2

−3

3

5. Amplitude=1, Vertical Shift=+3 7. Amplitude=1, Vertical Shift=0
Period=2π, Phase Shift=π4 Period =π, Phase Shift=π2

3
π
4

3π
4

5π
4

7π
4

9π
4

2

4

1
π
2

π 3π
2

2π 5π
2

−1

1

9. Amplitude=2, Vertical Shift=0 11. Amplitude=1
3 , Vertical Shift=0

Period=4π, Phase Shift=−2π Period =π, Phase Shift=−π
8

0−2π −π π 2π

−2

2

0
−π

8
π
8

3π
8

5π
8

7π
8

−1
3

1
3
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Section 2.5 (cont.)

13. Amplitude=2, Vertical Shift=-1 15. Amplitude=3, Vertical Shift=0
Period=π, Phase Shift=π6 Period =π, Phase Shift=−π

6

-1
π
6

5π
12

2π
3

11π
12

7π
6

−3

1

0
−π

6
π
12

π
3

7π
12

5π
6

−3

3

17. Amplitude=1, Vertical Shift=0
Period =4π, Phase Shift=−π

4

0
−π

4
3π
4

7π
4

11π
4

15π
4

−1

1

19. y = 0.5 cosx+ 1 21. y = −1 sinx− 2

23. B 24. E 25. H 26. D

27. A 28. G 29. F 30. C
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Section 2.5 (cont.)

31. Amplitude=2, Vertical Shift=-1 33. Amplitude=1, Vertical Shift=0
Period=π, Phase Shift=−π

4 Period =π, Phase Shift=π8

0
-1
−π

4
π
4

π
2

3π
4

−3

1

0
π
8

3π
8

5π
8

7π
8

9π
8

−1

1

35. Amplitude=3, Vertical Shift=+1 37. Amplitude=1
2 , Vertical Shift=-2

Period=2π, Phase Shift=−π
3 Period =2π, Phase Shift=π2

1
−π

3
π
6

2π
3

7π
6

5π
3

−2

4

-2
π
2

π 3π
2

2π 5π
2

−2.5

−1.5
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Section 3.3

1. x ≈ 41.4◦, 318.6◦ 3. no real solution

5. x ≈ 112.0◦, 248.0◦ 7. x ≈ 12.8◦, 167.2◦

9. x = 0◦, 180◦ ≈ 146.3◦, 326.3◦ 11. x ≈ 70.5◦, 289.5◦

13. x ≈ 68.2◦, 116.6◦, 248.2◦, 296.6◦ 15. x ≈ 140.0◦, 220.0◦

Section 3.4

1. x ≈ 53.6◦, 126.4◦, 187.9◦, 352.1◦ 3. x = 180◦ ≈ 70.5◦, 289.5◦

5. x ≈ 49.4◦, 130.6◦, 190.8◦, 349.2◦ 7. x = 180◦ ≈ 41.4◦, 318.6◦

9. x ≈ 22.5◦, 157.5◦ 11. x = 135◦, 315◦ ≈ 71.6◦, 251.6◦

13. x = 0◦ ≈ 138.6◦, 221.4◦ 15. x ≈ 21.3◦, 147.4◦, 201.3◦, 327.4◦
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Section 4.1

1. 6 A = 25◦, 6 B = 30◦, 6 C = 125◦ 3. 6 A = 57◦, 6 B = 25◦, 6 C = 98◦

a ≈ 8.45, b = 10, c ≈ 16.4 a = 1000, b ≈ 503.91, c ≈ 1180.76

5. 6 A = 102◦, 6 B = 28◦, 6 C = 50◦ 7. 6 A = 50◦, 6 B = 103◦, 6 C = 27◦

a = 185, b ≈ 88.79, c ≈ 144.88 a = 3, b ≈ 3.82, c ≈ 1.78

9. 6 A = 110◦, 6 B = 40◦, 6 C = 30◦ 11. 6 A = 23◦, 6 B = 110◦, 6 C = 47◦

a ≈ 5.64, b ≈ 3.86, c = 3 a ≈ 26.71, b ≈ 64.24, c = 50

13. 6 A = 70◦, 6 B = 10◦, 6 C = 100◦ 15. 6 A = 82◦, 6 B = 65.4◦, 6 C = 32.6◦

a ≈ 10.50, b ≈ 1.94, c = 11 a ≈ 39.75, b = 36.5, c ≈ 21.63

17 6 A = 42◦, 6 B = 61◦, 6 C = 77◦

a = 12, b ≈ 15.69, c ≈ 17.47

Section 4.2

1. 6 A = 50◦, 6 B ≈ 28.6◦, 6 C ≈ 101.4◦ 3. 6 A = 43◦, 6 B ≈ 59.3◦, 6 C ≈ 77.7◦

a = 32, b = 20, c ≈ 40.95 a = 23, b = 29, c ≈ 32.95
6 A = 43◦, 6 B ≈ 120.7◦, 6 C ≈ 16.3◦

a = 23, b = 29, c ≈ 9.47

5. no real solution 7. 6 A ≈ 59.8◦, 6 B = 24◦, 6 C ≈ 96.2◦

a = 17, b = 8, c ≈ 19.55
6 A ≈ 120.2◦, 6 B = 24◦, 6 C ≈ 35.8◦

a = 17, b = 8, c ≈ 11.51

9. 6 A = 108◦, 6 B ≈ 33.7◦, 6 C ≈ 38.3◦ 11. 6 A = 42◦, 6 B ≈ 113.9◦, 6 C ≈ 24.1◦

a = 12, b = 7, c ≈ 7.82 a = 18, b ≈ 24.59, c = 11
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Section 4.2 (cont.)

13. no real solution 15. 6 A = 43◦, 6 B ≈ 54.5◦, 6 C ≈ 82.5◦

a = 31, b = 37, c ≈ 45.07
6 A = 43◦, 6 B ≈ 125.5◦, 6 C ≈ 11.5◦

a = 31, b = 37, c ≈ 9.06

17. 6 A ≈ 15.3◦, 6 B ≈ 32.7◦, 6 C = 132◦ 19. 6 A ≈ 59.4◦, 6 B = 52◦, 6 C ≈ 68.6◦

a ≈ 7.81, b = 16, c = 22 a =≈ 76.46, b = 70, c = 82.7
6 A ≈ 16.6◦, 6 B = 52◦, 6 C ≈ 111.4◦

a ≈ 25.38, b = 70, c = 82.7

Section 4.3

1. 6 A ≈ 52.5◦, 6 B = 30◦, 6 C ≈ 97.5◦ 3. 6 A ≈ 47.8◦, 6 B ≈ 21.3◦, 6 C ≈ 110.9◦

a = 24, b ≈ 15.13, c = 30 a = 122, b = 60, c = 154

5. 6 A = 52◦, 6 B ≈ 80.3◦, 6 C ≈ 47.7◦ 7. 6 A ≈ 17.8◦, 6 B = 135◦, 6 C ≈ 27.2◦

a ≈ 28.78, b = 36, c = 27 a = 12, b ≈ 27.81, c = 18

9. 6 A ≈ 50.3◦, 6 B ≈ 72.3◦, 6 C ≈ 57.4◦ 11. 6 A ≈ 38.7◦, 6 B ≈ 53.1◦, 6 C ≈ 88.2◦

a = 21, b = 26, c = 23 a = 25, b = 32, c = 40

13. 6 A = 77.4◦, 6 B ≈ 55.9◦, 6 C ≈ 46.7◦ 15. 6 A ≈ 57.4◦, 6 B ≈ 46.1◦, 6 C ≈ 76.5◦

a ≈ 523.15, b = 444, c = 390 a = 112.7, b = 96.5, c = 130.2

Section 4.4

1. 23.2 miles 3. 262.9 miles, N43.5◦E

5. 802.9 miles 7. 32.9 miles

9. 3547.1 feet


